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Abstract
Autonomous agents deployed in safety-critical environments must operate with a clear awareness of safety
constraints embedded in their dynamics. Barrier certificates (BCs) are a powerful formalism for verifying such
safety properties in continuous dynamical systems. However, synthesizing BCs remains a computationally difficult
problem. In this work, we propose a novel approach for constructing BCs using the Augmented Lagrangian
framework, combined with Bayesian optimization over Gaussian Process models to efficiently guide the search
for valid certificates. We demonstrate our algorithm on several test cases, illustrating the success of our proposed
scheme.

Keywords
Barrier certificate, Dynamical systems, Gaussian process, Safety verification

1. Introduction

Autonomous agents operating in complex environments must not only achieve task performance
but also remain continuously aware of safety constraints that govern their permissible behaviors.
Dynamical systems theory, which studies the long-term behavior of evolving systems [1], provides
a formal foundation for modeling such agents. This is especially relevant in hybrid systems, where
continuous and discrete dynamics interact to define the agent’s trajectory in the physical world, as
commonly encountered in cyber-physical systems.

Ensuring safety in such systems is critical in domains such as aviation, autonomous driving, and
chemical process control [2, 3]. A central safety requirement is to verify that an agent’s trajectory,
starting from any admissible initial condition, does not lead into unsafe regions of the state space [4].
However, this is a computationally demanding problem due to the high dimensionality and nonlinear
behavior of many dynamical systems. Traditional approaches include reachability analysis [5, 6], often
supported by model checking [7] and deductive reasoning [8]. For specific system classes, symbolic
and decision-based methods have shown promise [9, 2, 10] , and various tools have been developed to
automate such analysis (see [11] for a comprehensive overview).

As an important numerical method for safety verification of autonomous agents, barrier certificates
(BCs) have been proposed recently [4, 12, 13]. The idea of BCs is to depict a ‘barrier’ between the possible
system trajectories and the given unsafe region in order to prove that the system is safe. In other words,
the existence of BCs serves as evidence for safety. Depending on the specific application, some studies
are committed to relax the conditions instead of using the definition in [4]. Combining multiple functions
to build a BC have been studied in [14] while discussing weaker BC conditions. Compositional synthesis
of BCs has been studied in [15] for hybrid systems consisting of many interconnected subsystems.
Extension of barrier certificates for stochastic systems and temporal specifications beyond safety is
studied in [16]. Input-to-state safe control barrier functionals (ISSf-CBFs) guarantee the safety of
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time-delay systems is proposed in [17]. Recent application of barrier certificates for checking properties
of quantum systems is addressed in [18].

With the advances in learning methods, various data-driven approaches have emerged to address
safety verification and synthesis of autonomous agents, showcasing the potential integration of machine
learning with traditional formal methods. Data-driven abstraction with formal guarantees is studied
in [19, 20] for satisfying temporal specifications. Data-driven reachable set computation with formal
guarantees is studied in [21]. Learning algorithms for computing BCs that are in the form of neural
networks are also proposed [22, 23]. Safety verification of autonomous agents with unknown dynamics
using noisy data from observations, Gaussian process regression, and abstracting the system into a
finite Markov model has been studied in [24].

Gaussian process (GP) regression is an efficient and accurate data-driven approach for approximating
computationally complex functions. An advantage of GPs is their ability to offer an efficient analytical
approximation over the entire domain of the target function. Furthermore, other approaches such
as deep neural networks typically need vast amounts of training data to ensure convergence of the
learning phase. This contrasts with GPs, which in many cases can learn good approximations even
with relatively small quantities of training data. GPs are used in optimization through a Bayesian
approach known as Gaussian process optimization (GPO) [25], which is often more sample-efficient
than traditional optimization methods.

GPs are used for verifying properties of agents with unknown dynamics. The authors of the papers
[26, 24, 27] use GPs to learn a model of the agent based on data. This is extended with deep kernel
learning in [28], where the GP kernel is augmented with a neural network preprocessing its inherent
feature map.

We concentrate on using GPO for the safety verification of a given autonomous agent through
the computation of BCs. Building upon insights from [29] and leveraging the augmented Lagrangian
framework as described in [30], we propose a framework that transforms the BC synthesis problem
into a constrained optimization problem using the augmented Lagrangian method. Our approach
computes the parameters of a BC from a fixed template through GPO for handling constraints. Given
that the constraints are in the form of parameterized optimizations, we fit a GP to estimate their values
from a finite number of evaluations. This gives a probabilistic interpretation of the constraints, which
are transformed to chance-constraints and subsequently incorporated into a reliability-based design
optimization (RBDO) [31]. We further validate the feasibility and effectiveness of our method through
implementation in three case studies. The main contributions of this article are threefold:

1. We introduce an optimization approach that synthesizes a BC from a parameterized set of functions
for autonomous agents evolving continuously in time. We reconfigure the problem into a robust
parameter optimization task and use augmented Lagrangian.

2. Gaussian process regression and RBDO are utilized to estimate with finite number of evaluations
the functions appearing as maximum over a continuous domain and satisfy the related constraints.

3. The validity of the computed BCs are formally verified using Satisfiability Modulo Theories (SMT)
solvers.

The remainder of this paper is organized as follows. A concise overview of essential details regarding
safety verification, BCs, and Gaussian process regression is provided in Section 2. Our proposed solution
approach is presented along with the algorithm in Section 3 containing the details of the augmented
Lagrangian, RBDO, and verification of the BC using SMT Solvers. Case studies are provided in Section
4 to illustrate the results with concluding remarks in Section 5.

2. Preliminaries and Problem Statement

In the following, R denotes the set of real numbers; argmin(·) returns an argument that minimizes the
input function, max(·) represents the largest value taken by the input function; Φ(·) is the cumulative
distribution function of the standard normal distribution, and 𝜑(·) is the probability density function of
the standard normal distribution.



2.1. Autonomous Agents and the Safety Problem

An autonomous agent modeled as a 𝑑-dimensional dynamical system over the continuous state space
𝑋 ⊂ R𝑑 is described by

𝑥̇ = 𝑓(𝑥), (1)

where 𝑥 = [𝑥1, . . . , 𝑥𝑑]
𝑇 is a column vector, 𝑥̇ denotes the derivative of 𝑥 with respect to time,

𝑓(𝑥) = [𝑓1(𝑥), . . . , 𝑓𝑑(𝑥)]
𝑇 is a Lipschitz-continuous vector field, and 𝑋 ⊆ R𝑑 is an open set defining

the state space of the system. The region for the initial state of the system 𝑥0 is denoted by 𝑋0; the
unsafe region of the system is denoted by 𝑋𝑢.

Definition 1 (Safety verification problem). Let Ψ(𝑥0, 𝑡) be the solution of the state equation (1) from
initial state 𝑥0 at time 𝑡 ≥ 0. If the reachable set

𝑝𝑜𝑠𝑡(𝑋0) := {𝑥 ∈ 𝑋|∃𝑥0 ∈ 𝑋0, 𝑡 ≥ 0 : Ψ(𝑥0, 𝑡) = 𝑥} (2)

satisfies
𝑝𝑜𝑠𝑡(𝑋0) ∩𝑋𝑢 = ∅, (3)

then the system (1) is considered safe. On the contrary, if there exists 𝑥𝑝 ∈ 𝑋 and 𝑡𝑝 ≥ 0 such that
Ψ(𝑥𝑝, 𝑡𝑝) ∈ 𝑝𝑜𝑠𝑡(𝑋0) ∩𝑋𝑢, then 𝑋𝑢 is reachable, which indicates the system is unsafe.

In Fig. 1 we depict examples of safe and unsafe systems.

(a) A safe system (b) An unsafe system

Figure 1: The Safety Verification Problem. The black box is the state space 𝑋 , which covers the set of initial states
𝑋0 (in green), the reachable set 𝑝𝑜𝑠𝑡(𝑋0) (in yellow) and the unsafe region 𝑋𝑢 (in red). The arrow represents a
trajectory of the system. Panel (1a): if 𝑝𝑜𝑠𝑡(𝑋0) does not intersect 𝑋𝑢, then 𝑋𝑢 is not reachable from 𝑋0, and
therefore the system is safe. Panel (1b): if there exists a trajectory that reaches 𝑋𝑢 from 𝑋0, then the system is
unsafe.

2.2. Barrier Certificate

Due to the difficulty of computing the reachable set 𝑝𝑜𝑠𝑡(𝑋0), the concept of barrier certificate (BC) [4]
has emerged as an effective way to prove the safety of a system. The idea of a BC is to find a so-called
barrier function that separates the reachable set and the unsafe set of the system, which means there
is no trajectory of the system that reaches 𝑋𝑢 from 𝑋0. Thus, as a sufficient condition, the system is
considered safe. A BC is a function of state that satisfies a set of inequalities on both the function itself
and its time derivative along the flow of the system [4]. We recall that for a continuously differentiable
function 𝐵(𝑥), the gradient of 𝐵(𝑥) is defined by the column vector

∇𝐵(𝑥) =
𝜕𝐵(𝑥)

𝜕𝑥
=

[︂
𝜕𝐵(𝑥)

𝜕𝑥1
, . . . ,

𝜕𝐵(𝑥)

𝜕𝑥𝑑

]︂𝑇
. (4)

Definition 2 (Lie derivative). Given a vector field 𝑓(𝑥), the Lie derivative of a continuously differentiable
function 𝐵(𝑥) is defined as the inner product of∇𝐵(𝑥) and 𝑓(𝑥):

𝐵̇(𝑥) = ∇𝐵(𝑥) · 𝑓(𝑥) =
𝑑∑︁

𝑖=1

(︂
𝜕𝐵(𝑥)

𝜕𝑥𝑖
· 𝑓𝑖(𝑥)

)︂
. (5)



Proposition 1 (BCs for Safety Verification[4]). Given a system described as in (1) with sets 𝑋0, 𝑋𝑢, and
𝑋 for which there exists a BC, namely a function 𝐵(𝑥) that is differentiable with respect to its argument
and satisfies the following conditions:

𝐵(𝑥) ≤ 0 ∀𝑥 ∈ 𝑋0, 𝐵(𝑥) > 0 ∀𝑥 ∈ 𝑋𝑢, and 𝐵̇(𝑥) ≤ 0 ∀𝑥 ∈ 𝑋, (6)

then the safety of the system is guaranteed. That is, there is no system trajectory starting from an initial
state in 𝑋0 and reaching a state in 𝑋𝑢.

The verification problem statement is as follows:

Input: A dynamical system 𝑥̇ = 𝑓(𝑥), initial region 𝑋0, unsafe region 𝑋𝑢 and state space 𝑋 .
Problem: Synthesize a BC 𝐵(𝑥) that guarantees the safety of the system within 𝑋 .

The notion of BC has played a predominant role in the investigation of dynamical systems, particularly
for safety verification. A BC represents a formal proof of safety for the system. For a system that is safe,
the existence of multiple BCs is plausible: multiplying a BC with a positive constant will give another
BC, and the set of BCs is a convex set meaning that any convex combination of BCs is again a BC. These
are immediate from (6).

2.3. Gaussian Process Regression

Gaussian process regression (GPR) is an approach for non-parametric Bayesian inference on functions
over continuous domains [32]. Theoretical and practical developments over the last decade have made
GPR a suitable approach for machine learning applications, in particular when training data are limited
or costly. This non-parametric approach assumes that a function 𝑔 : 𝑋 → R is a Gaussian process (GP)
meaning that its values at any 𝑥 ∈ 𝑋 is a random variable that is distributed according to a Gaussian
distribution. Therefore, the full probabilistic information on the function is characterized by a mean
function 𝑚(𝑥) and a covariance function 𝑘(𝑥,𝑥′), defined as follows:

𝑚(𝑥) = 𝐸[𝑔(𝑥)] and 𝑘(𝑥,𝑥′) = 𝐸[(𝑔(𝑥)−𝑚(𝑥))(𝑔(𝑥′)−𝑚(𝑥′))]. (7)

Such a GP gives the prior distributions on 𝑔(·) and is denoted by

𝑔(𝑥) ∼ 𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥,𝑥′)). (8)

When a set of 𝑁 observations 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑁 ]𝑇 on the values of the function 𝑔(·) at data points
[𝑥1, . . . ,𝑥𝑁 ] is available, the posterior distribution conditioned on the training data 𝑔(𝑥|𝐷), is again a
GP with mean 𝜇̂ and variance 𝜎̂:

𝜇̂ = 𝜅(𝑥)𝐾−1𝑦 and 𝜎̂ = 𝑘(𝑥,𝑥)− 𝜅(𝑥)𝐾−1𝜅(𝑥)𝑇 (9)

with the covariance matrix 𝐾 := [𝑘(𝑥𝑖,𝑥𝑗)]
𝑁
𝑖,𝑗=1 and the vector 𝜅(𝑥) := [𝑘(𝑥,𝑥1), . . . , 𝑘(𝑥,𝑥𝑁 )].

A frequently used covariance function is the squared exponential function

𝑘(𝑥𝑖,𝑥𝑗) = 𝜎2
𝑌 exp(−||𝑥𝑖 − 𝑥𝑗 ||2𝑀 ) (10)

with prior variance 𝜎2
𝑌 and scaling matrix 𝑀 . The scaling matrix 𝑀 , such as diag(1/𝑙21, . . . , 1/𝑙

2
𝑑),

assigns individual scaling factors to each component of the vector 𝑥. The vector of length scales
𝑙1, . . . , 𝑙𝑑, and 𝜎2

𝑌 are called hyperparameters, which are typically tuned through methodologies such
as maximum likelihood estimation.



3. Solution Approach

The construction of barrier functions is often not simple. For barrier functions that are polynomials
with unknown coefficients, the verification problem is transformed into obtaining the value of said
coefficients. In this section, as a first step, we transform the problem into an optimization problem on
the coefficients and state. Then, we propose a computational method and illustrate the algorithm.

Let 𝐵(𝑎,𝑥) denote a polynomial with fixed structure, where 𝑎 is the vector of parameters in 𝐵,
and 𝑥 = [𝑥1, . . . , 𝑥𝑑] are the polynomial variables; 𝜃 = [𝜃11, 𝜃12, . . . , 𝜃𝑑1, 𝜃𝑑2] is a 2𝑑 vector; Δ(𝜃) is a
hyperrectangle with edges that are parallel to the parameter axes defined as

Δ(𝜃) = {𝑥 ∈ 𝑋 | 𝜃𝑖1 ≤ 𝑥𝑖 ≤ 𝜃𝑖2, 𝑖 = 1, . . . , 𝑑}. (11)

We aim at finding parameters 𝑎 that maximize the volume of Δ(𝜃), in order to find a BC that proves
the system’s safety on the largest possible space. Reworking the general constraints described by (6),
we present the optimization problem on variables 𝑥 with parameters 𝑎 and 𝜃:

argmin
𝜃

𝑓(𝜃) (12)

𝑠.𝑡. 𝑐1(𝑎) ≤ 0, 𝑐2(𝑎) < 0, 𝑐3(𝑎,𝜃) ≤ 0, (13)

where

𝑐1(𝑎) := max
𝑥∈𝑋0

𝐵(𝑎,𝑥), 𝑐2(𝑎) := max
𝑥∈𝑋𝑢

−𝐵(𝑎,𝑥), and 𝑐3(𝑎,𝜃) := max
𝑥∈Δ(𝜃)

𝐵̇(𝑎,𝑥), (14)

and 𝑓(𝜃) is described as

𝑓(𝜃) = −
𝑑∏︁

𝑖=1

|𝜃𝑖1 − 𝜃𝑖2|. (15)

For simplicity, the constraints in (14) are denoted collectively as 𝑐𝑖(𝑎,𝜃), 𝑖 = 1, 2, 3, even though 𝑐1
and 𝑐2 do not depend on 𝜃.

The objective of the optimization in (12) is to maximize the size of the hyperrectangle Δ(𝜃) while
ensuring that 𝑎 satisfies (13). As showed in Fig. 2, if there exist 𝑎 and 𝜃 such that (13) holds with

𝑋 ⊆ Δ(𝜃), (16)

then (6) holds with 𝐵(𝑎,𝑥). That is to say, 𝐵(𝑎,𝑥) is a valid BC for the system, which is thus safe.

Figure 2: Diagram of an ideal Δ(𝜃). For 𝐵(𝑎,𝑥), if the constraints in (13) are satisfied and Δ(𝜃) covers 𝑋 ,
then the systems is safe.

To find a solution for the robust optimization (12), we utilize the concept of augmented Lagrangian
and employ GPR for generalizing its finite evaluation to the whole state space.



3.1. Augmented Lagrangian with Gaussian Process Regression

Augmented Lagrangian is used primarily for constrained nonlinear optimization [30]. This gives the
following objective function for an unconstrained optimization

𝐿(𝑎,𝜃,𝜆, 𝜌)=𝑓(𝜃) +
3∑︁

𝑖=1

𝜆𝑖𝑐𝑖(𝑎,𝜃) +
1

2𝜌

3∑︁
𝑖=1

max(0, 𝑐𝑖(𝑎,𝜃))
2, (17)

where the first term 𝑓(𝜃) is the objective function of the original constraint optimization (12). The
second term encodes the functions 𝑐𝑖(𝑎,𝜃) in the three constraints with coefficients 𝜆𝑖 ≥ 0 called
Lagrangian multipliers. The third term encodes the requirements on the functions 𝑐𝑖(𝑎,𝜃) to be negative
with the coefficients 𝜌 > 0 being penalty parameters that penalize the positive values of 𝑐𝑖(𝑎,𝜃).

The functions 𝑐𝑖(𝑎,𝜃) in (14) do not admit a closed-form solution in general since they are in the
form of parameterized maximization over a continuous domain. Therefore, we move towards using
Gaussian process regression that can build a likelihood for the values of such functions when a finite
number of evaluations of these functions is available. Denote by 𝑐̂𝑖(𝑎,𝜃) the GP model of 𝑐𝑖(𝑎,𝜃) and
define the following objective function based on the expectation of the assigned GPs:

𝑓𝐿(𝑎,𝜃,𝜆, 𝜌) =𝑓(𝜃) +
3∑︁

𝑖=1

𝜆𝑖𝐸[𝑐̂𝑖(𝑎,𝜃)] +
1

2𝜌

3∑︁
𝑖=1

𝐸[max(0, 𝑐̂𝑖(𝑎,𝜃))
2], (18)

where the GP model 𝑐̂𝑖(𝑎,𝜃) has the mean 𝜇̂𝑖(𝑎,𝜃) and variance 𝜎̂𝑖(𝑎,𝜃), and we have from [30] that

𝐸[𝑐̂𝑖(𝑎,𝜃)] =𝜇̂𝑖(𝑎,𝜃),

𝐸[max(0, 𝑐̂𝑖(𝑎,𝜃))
2] =𝜎̂2

𝑖 (𝑎,𝜃)
[︁
(1 +

𝜇̂𝑖(𝑎,𝜃)

𝜎̂𝑖(𝑎,𝜃)
)2Φ(

𝜇̂𝑖(𝑎,𝜃)

𝜎̂𝑖(𝑎,𝜃)
) + 𝜑(

𝜇̂𝑖(𝑎,𝜃)

𝜎̂𝑖(𝑎,𝜃)
)
]︁
. (19)

3.2. Reliability-based Design Optimization

By interpreting the values of the functions in the constraint as Gaussian random variables, the constraints
can no longer be hold, but need to be interpreted probabilistically and hold with a high probability.
Therefore, the constraint 𝑐𝑖(𝑎,𝜃) ≤ 0 can be replaced with

Prob(𝑐̂𝑖(𝑎,𝜃) ≤ 0) ≥ 1− 𝑝𝑡𝑎𝑟𝑔𝑒𝑡𝑖 (20)

for some small admissible failure probability 𝑝𝑡𝑎𝑟𝑔𝑒𝑡𝑖 . To handle such chance constraints, so-called
reliability-based design optimization (RBDO) [31] approaches are employed that are capable of consid-
ering constraints on the failure probability. Numerical methods for RBDO are studied previously, e.g.,
in [31]. The core idea is to estimate the failure probability (i.e., the complement of the right-hand side
of (20)) using Monte Carlo estimation

𝑝𝑖(𝑎,𝜃) ≈
1

𝑚

𝑚∑︁
𝑗=1

I(𝑐̂𝑖𝑗(𝑎,𝜃) > 0), (21)

where I(·) is the indicator function and 𝑐̂𝑖𝑗 , 𝑗 = 1, 2, . . . ,𝑚, are the samples drawn from the GP model
𝑐̂𝑖(𝑎,𝜃). Then the difference 𝑝𝑖(𝑎,𝜃) − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡𝑖 has to be negative and is considered as part of the
optimization.

3.3. Optimization Algorithm

The constructed optimization approach is presented in Algorithm 1. The details of the algorithm and its
subroutines are given as follows with a flowchart of the algorithm presented in Figure 3.
Initialization The initialization consists of: 1) selecting values for the Lagrange multipliers 𝜆 =
[𝜆1, 𝜆2, 𝜆3] and the penalty factor 𝜌; 2) randomly sampling (𝑎,𝜃) over their domain and forming the
initial dataset 𝑆; 3) computing the functions 𝑐𝑖(𝑎,𝜃) on 𝑆 and storing the values in a set 𝐶 .



Objective function With the optimization problem described as (13), the augmented Lagrangian of
(18) is used for the optimization.
Loop 1 (lines 8, 17-18) The outer loop is for updating 𝜆 and 𝜌 to find the parameters for the augmented
Lagrangian approach according to the heuristic update rule [30]. This is based on increasing the penalty
factor when the constraints are violated in new data points. The iterations are performed until an 𝑠* is
found that satisfies (16) and (13).
Loop 2 (lines 6-13) The inner loop solves the maximization in (18) on 𝑎 and 𝜃, given the most
recent candidates for 𝜆 and 𝜌 from the outer loop. The optimization (line 10) is done using Bayesian
optimization, during which GP models of 𝑐𝑖(𝑎,𝜃) are learned. Then 𝑠′ is included in the dataset (line
14). With updated 𝑓 ′

𝐿(𝑎,𝜃,𝜆, 𝜌) (line 15), the iterations are performed until an ideal 𝑠* is found or 𝑓 ′
𝐿

does not improve over 𝑓𝐿 with current 𝜆 and 𝜌.
In practice, the implementation of Algorithm 1 employs a further parameter that caps the number

of iterations, to prevent untimely or prolonged execution, ensuring acceptable performance within
reasonable time constraints.

3.4. Verifying the BC Using SMT Solvers

In order to verify the BC computed by the optimization algorithm, Satisfiability Modulo Theories
(SMT) solvers [33, 34] are employed for formally checking the validity of the BC. An SMT solver is a
tool for deciding correctly, i.e., without numerical errors, the satisfiability of a logical formula over a
mathematical theory, e.g., linear real arithmetic. In our case, each negated constraint can be seen as a
formula that we aim to refute (which means the constraint is satisfied). Define the logical formula

(∃𝑥 ∈ 𝑋0, −𝐵(𝑥) < 0) ∨ (∃𝑥 ∈ 𝑋𝑢, 𝐵(𝑥) ≤ 0) ∨ (∃𝑥 ∈ 𝑋, −𝐵̇(𝑥) < 0), (22)

which is the negation of constraints in (6). Hence, a candidate BC is verified when the SMT solver
returns unsatisfiable for the logical formula in (22). Barrier certificates reported in the case study section
of this paper are verified by the SMT solvers Z3 and dReal [33, 34].

4. Case studies

In this section, we present four case studies that demonstrate the validity of our approach. All experi-
ments are performed with Matlab R2025a with an Apple M3, 24 GB RAM Macbook Air. The estimation

The defined objective function 
𝑓!(𝒂, 𝜽, 𝝀, 𝜌)

Update 𝝀, 𝜌

An ideal 𝐵(𝒂′, 𝒙)

Choose a new set of data 𝒔" = (𝒂", 𝜽")

Update 𝑓!" 𝒂", 𝜽", 𝝀, 𝜌

Add 𝒔′ into the data set and observe c# 𝒔′

Yes

Yes

Loop 1

Loop 2

Does 𝑓!" 𝒂", 𝜽", 𝝀, 𝜌 have no 
improvement over 𝑓!?

Does c! 𝒔′ meet (13) and (16)?

No
No

Figure 3: Flowchart of Algorithm 1.



Algorithm 1: Barrier Certificate Synthesis
Input: A dynamical system as in (1); sets 𝑋0, 𝑋𝑢, 𝑋 ;

1 Select initial values for the Lagrange multipliers 𝜆 = [𝜆1, 𝜆2, 𝜆3] and the penalty factor 𝜌;
2 Select a dataset 𝑆 by randomly choosing (𝑎,𝜃);
3 Compute the functions 𝑐𝑖(𝑠,𝜃) using (14) on 𝑆 and store the values in a set 𝐶 ;
4 Compute the augmented Lagrangian 𝑓𝐿(𝑎,𝜃,𝜆, 𝜌) on the dataset 𝑆;
5 if 𝑐𝑖(𝑎,𝜃) meet (13) and Δ(𝜃) meets (16) for some (𝑎,𝜃) ∈ 𝑆 then
6 𝑠* ← (𝑎,𝜃)
7 end
8 repeat
9 repeat

10 Select a new 𝑠′ = (𝑎′,𝜃′) by maximizing (18);
11 if 𝑐𝑖(𝑠

′) meet (13) and Δ(𝜃′) meets (16) then
12 𝑠* ← 𝑠′ ;
13 end
14 𝑆 ← 𝑆 ∪ 𝑠′, 𝐶 ← 𝐶 ∪ 𝑐𝑖(𝑎

′,𝜃′) ;
15 update the Lagrangian 𝑓 ′

𝐿(𝑎,𝜃,𝜆, 𝜌) with the GPs on the new dataset ;
16 until 𝑓𝐿 ≤ 𝑓 ′

𝐿 or 𝑠* ̸= ∅;
17 𝜆𝑖 ← max(0, 𝜆𝑖 +

𝑐𝑖(𝑎
′,𝜃′)
𝜌 ) ;

18 Set 𝜌← 1
2𝜌 if 𝑐𝑖(𝑎′,𝜃′) > 0

19 until 𝑠* ̸= ∅;
20 Verify that (13) is satisfied with 𝑠* = (𝑎*,𝜃*) using SMT solvers;

Output: 𝑠* = (𝑎*,𝜃*) satisfying (13) and (16).

of hyperparameters for the GPR is executed using the fitrgp function in MATLAB with its default
settings.

Case 4.1. Consider the two-dimensional system{︃
𝑥1̇ = 𝑥1 + 2𝑥2,

𝑥2̇ = 𝑥1𝑥2 − 1
2𝑥

2
2,

with initial set 𝑋0 = [−1, 1] × [−1, 1], unsafe set 𝑋𝑢 = [−1, 1] × [3, 5], and 𝑋 = [−5, 5] × [−5, 5].
Assume the BC is polynomial as 𝐵(𝑎,𝑥) = 𝑎1𝑥

2
1 + 𝑎2𝑥2 + 𝑎3.

For this case study, two experiments are conducted as Row 1 and Row 2 in Table 1. In Row 1, the
value of the 𝑎𝑖’s are 𝑎𝑖 ∈ {−1,−1

2 , 0,
1
2 , 1} for 𝑖 = 1, 2, 3, thereby resulting in 53 = 125 data points

for the initial dataset 𝑆. However, the algorithm terminates at the 27th data point, returning a valid
result well before the generation of the entire dataset. Hence, no iterations are performed. With a

Table 1
Barrier Certificate Synthesis using Algorithm 1. The 𝑎𝑖 column shows the initial dataset for each
component of 𝑎. The 𝑠* column reports [𝑎*,𝜃*] returned by Algorithm 1.

Row Case Study 𝑎𝑖 𝑠* = [𝑎*,𝜃*]
1 Case 1 {−1,− 1

2 , 0,
1
2 , 1} [-0.5000, 1.0000, -1.0000, -5.0000, 5.0000, -5.0000, 5.0000]

2 Case 1 {−1, 0, 1} [-1.3993, 2.4492, -2.9646, -9.3977, 5.2681, -9.4590, 7.1630]

3 Case 2 {− 1
2 , 0,

1
2}

[-0.2465, -0.6794, -0.8787, -1.1328, -0.8086,

-4.9977, 4.8801, -4.9696, 4.7986]

4 Case 3 {−1, 0, 1} [0.7654, -2.7858, 1.8012, -1.8210, 2.2383, -0.0945, 1.4833]

5 Case 3 {−1, 1} [2.9760, -2.9401, 1.6344, -2.9823, 1.0333, 0.2645, 1.3431]

6 Case 4 {−1, 1} [1.0000, 1.0000, 1.0000, -1.0000, 0.1000, 1.0000, 0.1000, 1.0000]



smaller initial dataset shown in Row 2, 𝑠* is found on the 79𝑡ℎ iteration. As shown in Table 1 Row 2,
the algorithm returns

𝑠* = [𝑎*,𝜃*] = [−1.3993, 2.4492,−2.9646⏟  ⏞  
𝑎*

,−9.3977, 5.2681,−9.4590, 7.1630⏟  ⏞  
𝜃*

],

which means that the candidate BC 𝐵(𝑥) = −1.3993𝑥21 + 2.4492𝑥2 − 2.9646 meets (13) for Δ(𝜃) =
[−9.3977, 5.2681]× [−9.4590, 7.1630], which covers 𝑋 = [−5, 5]× [−5, 5]. Hence, (6) holds for the
computed 𝐵(𝑥) with the given 𝑋 . Thus, it is a valid BC for the system, which indicates the system is
safe. In Figure 4 (top panels) we depict the results of Row 2 of Table 1.

Case 4.2. Consider the two-dimensional system{︃
𝑥1̇ = 𝑥2,

𝑥2̇ = −𝑥1 + 1
3𝑥

3
1 − 𝑥2,

with initial set 𝑋0 = {(𝑥1− 1.5)2 + 𝑥22 ≤ 0.25}, unsafe set 𝑋𝑢 = {(𝑥1 +1)2 + (𝑥2 +1)2 ≤ 0.16}, and
𝑋 = [−7

5 , 2]× [−7
5 ,

1
2 ]. Assume the BC is a polynomial as 𝐵(𝑥) = 𝑎1𝑥

2
1 + 𝑎2𝑥1𝑥2 + 𝑎3𝑥1 + 𝑎4𝑥2 + 𝑎5.

Due to the conservativeness of the convex condition, the method based on the condition (6) succeeded
only in one case (degree = 4) borrowed from [35]. Instead, here we employ the exponential conditions
from (3) in [35], where 𝐵̇(𝑎,𝑥)− 𝜙𝐵(𝑎,𝑥) ≤ 0, for all 𝑥 ∈ 𝑋 , with 𝜙 = −1. The algorithm’s output
is

𝑠* = [𝑎*,𝜃*] = [−0.2465,−0.6794,−0.8787,−1.1328,−0.8086⏟  ⏞  
𝑎*

,−4.9977, 4.8801,−4.9696, 4.7986⏟  ⏞  
𝜃*

],

which is listed in Table 1 Row 3. Therefore, the BC 𝐵(𝑥) = −0.2465𝑥21 − 0.6794𝑥1𝑥2 − 0.8787𝑥1 −
1.1328𝑥2 − 0.8086 satisfies the condition (13) for Δ(𝜃) = [−4.9977, 4.8801]× [−4.9696, 4.7986] that
covers 𝑋 = [−7

5 , 2]× [−7
5 ,

1
2 ]. Hence, (6) holds for the candidate 𝐵(𝑥) with the given 𝑋 . Thus, it is a

BC for the system, and the system is safe.

Case 4.3. The complex structure of the human brain, with billions of neurons and trillions of synaptic
connections, presents a modeling challenge. The Wilson-Cowan (WC) model [36] is a neurophysiological
model that captures the brain’s function through simplified differential equations grounded in neurophysio-
logical principles. The WC model has shown correlation with experimental evidence, affirming its utility
in studying neurological phenomena, including epilepsy. As mentioned in [37], the presence of seizure
activity in a specific brain region is considered an unsafe state of the model. As such, it is important to
study whether for a given combination of initial state and parameters the WC model is safe, i.e., it shows
no seizures. With the parameters set in [37], the system is described as

𝑥1̇ =
1

0.0264

[︂
−𝑥1 +

1

1 + 𝑒−(17𝑥1+10𝑥2+4.3−𝑑1)

]︂
,

𝑥2̇ =
1

0.012

[︂
−𝑥2 +

1

1 + 𝑒−(25𝑥1+10−𝑑2)

]︂
,

where 𝑥1 and 𝑥2 are the populations of excitatory and inhibitory neurons, respectively; 𝑑1, 𝑑2 represent
disturbances to the input of 𝑥1, 𝑥2, respectively, and are both in [−0.2, 0.2]. In our experiments we set
𝑋0 = [0, 15 ] × [45 , 1], 𝑋𝑢 = [13 ,

1
2 ] × [13 ,

1
2 ], and 𝑋 = [0, 12 ] × [13 , 1]. Assume the BC is a polynomial

structured as 𝐵(𝑥) = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3.

As shown in Table 1 Row 4, the algorithm returns

𝑠* = [𝑎*,𝜃*] = [0.7654,−2.7858, 1.8012⏟  ⏞  
𝑎*

,−1.8210, 2.2383,−0.0945, 1.4833⏟  ⏞  
𝜃*

]



Figure 4: Graphical representation of barrier certificate synthesis. Grey arrows: vector fields of the system;
green boxes and ovals: initial region 𝑋0; red boxes and ovals: unsafe set 𝑋𝑢; black line: state space 𝑋 ; blue
dashed rectangles: Δ(𝜃); purple lines: graph defined by 𝐵(𝑥) = 0. Left-hand side column: final results of BC
synthesis corresponding to Rows 2 (top), 3 (middle), and 5 (bottom) in Table 1, using the color legend above.
Right-hand side column: intermediate steps of the BC synthesis leading to the final output displayed in the
corresponding graph in the left-hand side column.

affirming that 𝐵(𝑥) = 0.7654𝑥1 − 2.7858𝑥2 + 1.8012 fulfills condition (13) for Δ(𝜃) =
[−1.8210, 2.2383] × [−0.0945, 1.4833], which covers 𝑋 = [0, 12 ] × [13 , 1]. Consequently, (6) is sat-
isfied for the computed 𝐵(𝑥) under the given 𝑋 , which makes it a valid BC for the system. In Figure 4
(mid panels) we display the BC found and the output of several intermediate steps performed by our
synthesis algorithm.

Case 4.4. The Moore-Greitzer jet engine model is described as{︃
𝑥1̇ = −1.5𝑥21 − 𝑥2 − 0.5𝑥31,

𝑥2̇ = −𝑥1,

with initial set 𝑋0 = [0.1, 0.5]× [0.1, 0.5], unsafe set 𝑋𝑢 = [0.7, 1]× [0.7, 1], and 𝑋 = [0.1, 1]× [0.1, 1].
Assume the BC is a polynomial as 𝐵(𝑥) = 𝑎1𝑥

2
1 + 𝑎2𝑥1𝑥2 + 𝑎3𝑥

2
2 + 𝑎4.

Our algorithm’s output is

𝑠* = [𝑎*,𝜃*] = [1, 1, 1,−1⏟  ⏞  
𝑎*

, 0.1, 1, 0.1, 1⏟  ⏞  
𝜃*

],



Therefore, the BC𝐵(𝑥) = 2𝑥21+2𝑥1𝑥2+2𝑥22−2 satisfies the condition (13) forΔ(𝜃) = [0.1, 1]×[0.1, 1],
which covers 𝑋 . Hence, (6) holds for the candidate 𝐵(𝑥) with the given 𝑋 . Thus, it is a BC for the
system, and the system is safe.

Table 2
Hyperparameters used in the Case Studies.

Type 𝜆𝑖 𝜌 Mesh(a) 𝑝𝑡𝑎𝑟𝑔𝑒𝑡𝑖 𝑁 seed Exploration Ratio
Case 1 1 1/2 1 1,3 𝑒−4 20 42 0.1

2 1 1 1,3 𝑒−4 20 42 0.1
3 1/2 1 1,3 𝑒−4 20 42 0.5
4 1/2 1 1,3 𝑒−4 20 1 0.1
5 1/2 1 1,5 𝑒−4 50 42 0.1
6 1/2 1 1,3 𝑒−6 20 42 0.1
7 1/2 1 1,3 𝑒−2 20 42 0.1

Case 2 1/2 1 1,3 𝑒−4 20 1 0.1
Case 3 1/2 1 1,3 𝑒−4 20 42 0.1
Case 4 1/2 1 1,3 𝑒−4 20 42 0.1

Table 3
CPU time statistics for 100 runs, compared to PRoTECT with the cvxopt solver.

CPU Time (s)
Our Work PRoTECT(cvxopt)

min max avg std avg std
Case 1 (type1) 1.58 6.58 2.05 0.93
Case 1 (type2) 1.49 6.58 2.04 0.94
Case 1 (type3) 1.57 6.55 2.11 0.93
Case 1 (type4) 20.47 34.61 21.47 1.43
Case 1 (type5) 0.16 1.67 0.27 0.29
Case 1 (type6) 1.50 6.56 2.02 0.95
Case 1 (type7) 1.52 6.47 2.05 0.92

0.0010 0.0000

Case 2 7.40 15.41 7.93 0.97 N/A
Case 3 0.40 2384.06 147.41 308.52 N/A
Case 4 0.05 1.31 0.17 0.22 0.0008 0.0000

Compared with Table 1 Row 4, the initial dataset is derived from the mesh grid of 𝑎 with a step size
of 2 in Row 5. Consequently, the initial dataset comprises 8 data points instead of 27. Notably, despite
the reduction in the size of the dataset, the algorithm consistently returns valid results, of course at the
expense of a higher number of iterations and thus higher CPU time. In Figure 4 (bottom panels) we
display the BC found for Row 5 of Table 1.

The barrier certificates reported in Table 1 are verified by the SMT solvers Z3 [34] and dReal [33].
Specifically, according to the applicability, for polynomial-based Cases 4.1,4.2 and 4.4, the Z3 solver [34]
was employed. For Case 4.3, which has transcendental elements, the dReal solver [33] was utilized for
verification. Note that the unsatisfiable answer by dReal is formally correct.

Using a small-sized initialization and generating the dataset internally, the case studies demonstrate
both the effectiveness of our approach. An insightful observation from the provided table highlights that,
even for the same system, distinct initializations yield different results. Compared with computation
time in the order of hours in [37] in the case study 4.3, our method successfully computes a BC over a
bounded state space, requiring only a small dataset and computation times in the order of minutes on a
standard laptop.

The hyperparameters are reported in Table 2. The statistics of the CPU times are reported in Table 3
and is compared against PRoTECT [38]. Note that PRoTECT is developed only for polynomial systems
with sets in the form of intervals. Therefore, it cannot handle Case 2 and 3. In contrast, our approach,
while being slower on polynomial cases, can handle more general nonlinear systems and sets.



5. Conclusion

In this paper, we proposed an optimization method for computing barrier certificates that give guarantees
on safety of dynamical systems. The optimization utilizes the augmented Lagrangian framework and
Gaussian process regression to efficiently represent black-box functions appearing in the constraints.
The dataset needed for training the Gaussian process are sequentially generated based on Bayesian
optimization and the augmented Lagrangian. The performance of the proposed optimization on the
case studies shows that the method returns results with small-size samples, which are generated
automatically, thus reducing the computational time from hours to minutes on the tested case studies.
The computed barrier certificates are verified a posteriori using solvers from Satisfiability Modulo
Theory. Our approach currently assumes the system dynamics are known and replaces the parameterized
optimizations in the barrier certificate conditions with black-box functions that can be evaluated a finite
number of times. In the future, we plan to relax this assumption by treating the system as a black-box
model and couple the current optimization approach directly to the data gathered from the system.
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