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Abstract

We propose and analyze a rule-based model of the HMGB1 géignphthway. The protein
HMGBL1 can activate a number of regulatory networks — the p#3B, Ras and Rb pathways —
that control many physiological processes of the cell. HMGs been recently shown to be im-
plicated in cancer, inflammation and other diseases. Inpdyier, we focus on the MB pathway
and construct a crosstalk model of the HMGB1-p53«iBFRas-Rb network to investigate how these
couplings influence proliferation and apoptosis (progradell death) of cancer cells. We first built
a single-cell model of the HMGB1 network using the rule-liBB®NetGen language. Then, we an-
alyzed and verified qualitative properties of the model byanseof simulation and statistical model
checking. For model simulation, we used both ordinary difféial equations and Gillespie’s stochas-
tic simulation algorithm. Statistical model checking elegbus to verify our model with respect to
behavioral properties expressed in temporal logic. Oulyaisashowed that HMGB1-activated re-
ceptors can generate sustained oscillations of irregut@litude for the Nk B, 1kB, A20 and p53
proteins. Also, knockout of A20 can destroy theBFNF«B negative feedback loop, leading to the
development of severe inflammation or cancer. Our modelmisdicted that the knockout or over-
expression of thedB kinase can influence the cancer cell’s fate — apoptosisreiveli— through the
crosstalk of different pathways. Finally, our work showattbomputational modeling and statistical
model checking can be effectively combined in the study ofdgjical signaling pathways.

1 Introduction

Computational modeling is increasingly used to gain insighto the behavior of complex biological
systems, such as signaling pathways. Moreover, powerfification methods €.g, model checking
[8]) from the field of hardware verification have been receatbplied to the analysis of biological sys-
tem models. In this paper we build a single-cell model of ttdG@B1 pathway using the rule-based
BioNetGen languagée [21], and use statistical model chgdkriormally verify interesting properties of
our model. We argue that computational modeling and dtalsnodel checking can be combined into
an effective tool for analyzing the emergent behavior of plax signaling pathways. In particular, the
use of statistical model checking enables us to tackle ksygems in a scalable way.

The High-Mobility Group Box-1 (HMGB1) protein is releasenbin necrotic cells or secreted by
activated macrophages engulfing apoptotic célls [12]. Resteidies have shown that HMGB1 and its
receptors, including the Receptor for Advanced Glycatiod products (RAGESs) and Toll-Like Recep-
tors (TLRs), are implicated in cancer, inflammation and otliseases [10, 41]. Elevated expression of
HMGBL1 occurs in various types of tumors, including colonn@#atic, and breast cancerl[L2] B3, 44].
HMGBL1 can activate a number of regulatory networks — the PABR, NFkB, and Ras pathways —
which control many physiological processes including cgtlle arrest, apoptosis and proliferation. The
cell cycle is strictly regulated and controlled by a numbiesignaling pathways that ensure cell prolif-
eration occurs only when it is required by the organism as@ei9]. Overexpression of HMGB1 can
continuously activate cell-growth signaling pathwaysreifdhere are protein mutations or DNA dam-
age, possibly leading to the occurrence of cancer in thedutRecenin vitro studies with pancreatic
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cancer cells[[26] have shown that the targeted knockouthibition of HMGB1 and its receptor RAGE
can increase apoptosis and suppress cancer cell growth pfihomenon has also been observed with
lung cancer and other types of cancer célls [4, 12].

Model Checking[[7|18] is one of the most widely used technigfer the automated verification
and analysis of hardware and software systems. System snadelsually expressed as state-transition
diagrams and a temporal logic is used to describe the dgzioperties (specifications) of system execu-
tions. A typical property stated in temporal logicGggrant_req— Fack), meaning that, it is alwaysy
= globally) true that a grant request eventualy=future) triggers an acknowledgment. One important
aspect of Model Checking is that it can be performed algarithlly — user intervention is limited to
providing a system model and a property to check. Becausedital systems are often probabilistic in
nature, we make use efatisticalmodel checking, a technique tailored to the verificationto€lsastic
systems (see Sectibh 2).

In [18], we proposed the first model of HMGBL1 signal transéucgtbased on known signaling path-
way studies(|B, 38, 47]. The model was used to investigataripertance of HMGBL1 in tumorigenesis.
In this work, we propose a single-cell model of the HMGBA1 silgmg pathway, which includes the ¥B
pathway and a crosstalk model of the HMGB1-p53x#-Ras-Rb network. The model is described by
means of the rule-based BioNetGen languagé [21]. We analydeverify qualitative properties of the
model using simulation and statistical model checking. fodel simulation, we use both ordinary
differential equations (ODEs) and Gillespie’s stochasimulation algorithm|[[15]. Statistical model
checking enables us to verify our model with respect to bielhalvproperties expressed in temporal
logic.

Our baseline simulations show that HMGB1-activated remmsptan generate sustained oscillations
of irregular amplitude for the NEB, kB, IKK and A20 proteins. However, mutation or knockout
of the A20 protein can destroy theB-NFkB negative feedback loop, leading to the development of
severe inflammation or cancer. Further analysis shows traerpression of HMGB1 can up-regulate
the oncoproteins NEB and Cyclin E (which regulate cell proliferation), but dowggulate the tumor-
suppressor protein p53 (which regulates cell apoptosisp,Averexpression of NéB can increase the
expression level of both Cyclin E and p53. Our model alsoiptedhat the knockout or overexpression
of the IkB kinase (IKK) can influence the cancer cell’s fate — apogtosisurvival — through the crosstalk
of different pathways. To the best of the authors’ knowledbes work is the first attempt to integrate
the N« B, p53, Ras, and Rb signaling pathways activated by HMGBharole-based model.

2 Statistical Model Checking

In the past few years, there has been growing interest irotineall verification of stochastic systems, and
biological systems in particular |26,128.139], by means ofdeiachecking techniques. The verification
problem is to decide whether a stochastic model satisfiempdrl logic property with gorobability
greater than or equal to a certain threshold. To expresspiep, we use a temporal logic in which the
temporal operators are equipped witbunds For example, the property “p53 will always stay below
30 in the next 80 time units” is written a88°(p53 < 30). We ask whether our stochastic systén
satisfies that formula with a probability greater than oradqol a fixed threshold (say 0.99), and we write
M |= Pr-0.90[G®(p53 < 30)]. Such questions can be answeredSatistical Model Checkinfb0], the
technique we use for verifying BioNetGen models simulate@&hblespie’s algorithm.

Statistical model checking treats the verification probéea statistical inference problem and solves
it by randomized sampling of traces (simulations) from thaded. In particular, the inference problem
can be solved by means of hypothesis testing or estimatitie. fdrmer amounts to deciding between
two hypotheses M |= Pr-g[¢] versusM |= Pr_g[@], wheref is a given probability threshold anglis a
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temporal logic property. The latter, instead, approxireat@babilistically (that is, it computes with high
probability anestimateclose to) the true probabilitp that ¢ holds, and then compares that estimate with
6. In both approaches, sampled traces are model checkeddinally to determine whether propergy
holds, and the number of satisfying traces is used by thethgpis testing (or estimation) procedure to
decide betweemp > 6 and p < 6. (In the case of estimation, one also has an estimate th&iss to
p with high probability.) Note that statistical model chewicannot guarantee a correct answer to the
verification problem. However, the probability of giving aomg answer can be arbitrarily bounded by
the user.

In the next section we describe the temporal logic used swvilork, Bounded Linear Temporal Logic
(BLTL) [25] 51]].

2.1 Bounded Linear Temporal Logic

Let SV be a finite set of real-valued variables. An atomic proposifP is a boolean predicate of the
form e; ~ &, wheree; ande, are arithmethic expressions over variableS$ih and~ is either>, <, or

=. A BLTL property is built over atomic propositions using tean connectives and bounded temporal
operators. The syntax of the logic is the following:

P:=AP|aV@ | o @] -0 | aU .
The bounded until operatqr U ¢ requires thatwithin timet, ¢ will be true andg, will hold until then.
Bounded versions of the andG operators can be easily definddp = true U' g requiresy to hold true
within timet; Gt = —F'=¢ requiresp to hold true up to time.

The semantics of BLTL is defined with respectttaces(or executions) of a system. In our case, a
trace will be the output of a BioNetGen model simulated byeSpie’s algorithm. Formally, a trace is a
sequence of time-stamped state transitions of the em(sp,to), (S1,t1), ..., where(s,t;) denotes that
the system moved to stasg ; after having sojourned fdy time units in states. The fact that a trace
satisfies the BLTL property is written o |= ¢. We denote the trace suffix starting at skelpy o¥. We
have the following semantics of BLTL.:

e 0X= AP ifand only if AP holds true in statsy;
o 0XE=@ V@ ifandonly if o= ¢ or 0% = @;
o 0= @A @ ifandonly if o= @ andoX = @;
o 0X= @ ifand only if o¥ = ¢ does not hold;

o 0¥=@U'e ifand only if there exists € N such that, (& o<i<itke <t, (b) 0*™' = @ and (c)
for each 0< j < i, o1 |= q.

Note that the semantics of BLTL is defined ovminite traces, while of course any simulation trace must
be finite in length. It can be shown that traces of an apprtg(finite) length are sufficient to decide
BLTL properties. The interested reader can find detailsrdisee [51].

2.2 Bayesian Statistical Model Checking

We recently introduced sequential Bayesian hypothesisigeand estimation techniques and applied
them to the verification of signaling pathways and othertgistic systems [25, 51]. Sequential sampling
means that the number of sampled traces is not fixed a prigrif Is instead determined at “run-time,”
depending on the evidence gathered by the samples seen Shifanften leads to a significantly smaller
number of sampled traces. Both approaches are based on Be@em, which enables us to use prior
information about the model being verified, where availakiie now briefly describe both techniques.
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Bayesian Hypothesis Testing. The hypothesis test is based on the Bayes Factor, which ikétie
hood ratio of the sampled data with respect to the two hypatheFor statistical model checking, the
hypotheses being tested dfg: p > 6 andH; : p < 8, wherep is the (unknown) probability that our
model satisfies a given property, aflds a probability threshold. Formally, the Bayes Factor ahda
d and hypotheseblg andH; is B = E:Egm‘l’g Therefore,B can be interpreted as a measure of evidence
(given by the datal) in favor of Hp. Now, fix an evidence thresholfl > 1. Our algorithm iteratively
draws independent and identically distributed (iid) samiphceso;, 0»,..., and checks whether they
satisfy ¢. After each trace, the algorithm computes the Bayes F&torcheck if it has obtained con-
clusive evidence. The algorithm acceplgif B > T, and rejectdy (acceptingH;) if B < % Otherwise

(if % < B < T), it continues drawing iid samples. It can be shown that wheraelgorithm terminates,
the probability of a wrong answer is bounded abovéb;‘[ he algorithm is shown below in Algorithi 1

— full details can be found elsewhele|[51].

Algorithm 1 Statistical Model Checking by Bayesian Hypothesis Testing
Require: BLTL Property ¢, Probability threshold € (0,1), ThresholdT > 1, Prior densityg for un-
known parametep

n:=0 {number of traces drawn so far
x:=0 {number of traces satisfying so far}
loop

o :=draw a sample trace of the system (iid)

n:=n+1

if ok @ then

X:=x+1
end if
% = BayesFactdn, X) {compute the Bayes Factor

if (#>T)then
return Hg accepted
else if (# < 1) then
return Hj accepted
end if
end loop

Bayesian Interval Estimation. Recall that in estimation, we are interested in computinglaes(an
estimate) which is close tp with high probability, the true probability that the modalisfies the prop-
erty. The estimate is usually in the form of a confidence Waler an interval in[0, 1] which contains

p with high probability. Our estimation method follows ditlcfrom Bayes’ theorem. Given a prior
distribution overp and sampled data, Bayes' theorem enables us to obtajposterior distribution of

p (i.e.,, the distribution ofp given the data sampled and the prior). This means that we stamate

p with the mean of the posterior distribution. Furthermorngjridegrating the posterior over a suitably
chosen interval, we can compute a Bayes interval estimdteamy given confidence coefficient. Fix
a confidences (%,1) and a half-widthd € (0, %). Our algorithm iteratively draws iid traces, checks
whether they satisfy, and builds an interval of total widthd centered on the posterior mean. If the
integral of the posterior over this interval is greater tisathe algorithm stops; otherwise, it continues
sampling. The algorithm is given in Algorithioh 2. Again, fakktails are given il [51].
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Algorithm 2 Statistical Model Checking by Bayesian Interval Estimates

Require: BLTL Property ¢, half-interval size5 € (0,3), interval coefficient € (3, 1), Prior Beta dis-
tribution with parameters, 3

n:=0 {number of traces drawn so far
x:=0 {number of traces satisfying so far}
repeat

o :=draw a sample trace of the system (iid)

n:=n+1

if ok @ then

X:=x+1

end if

p:=(x+a)/(n+a+p) {compute posterior mean

(to,t1) = (p—90,p+9) {compute interval estimaje

if t;>1 then

(to,tl) = (l— 2. 5, 1)
else if tp < 0 then
(to,tl) = (0,2' 5)
end if
{compute posterior probability of @ (to,t1)}
y := PosteriorProlig,t1)
until (y>c)
return (to,t1), P

3 Crosstalk Model of HMGB1

Apoptosis and cell proliferation are two important proessi cancer and are respectively regulated by
two proteins — p53 and Cyclin E — acting in two different siymapathways. The protein p53 is a tumor
suppressor whose activation can lead to cell cycle arrdsS Eepair or apoptosis. Cyclin E is a cell
cycle regulatory protein that regulates the G1-S phasseitian during cell proliferation. The behavior
of these two signaling pathways can be influenced by crésstatoupling with other pathways and
proteins.

3.1 Motivations

Experimental studies have shown that HMGB1 can activateetifiundamental downstream signaling
pathways: the PI3K/AKT, RAS-ERK and MB pathways. These in turn lead to the activation of two
other signaling pathways: the p53-MDM2 and Rb-E2F pathwaysich regulate apoptosis and cell
proliferation, respectively. Iri{18], we proposed the fostmputational model for HMGBL1 signal trans-
duction (also called the N&B-knockout model). The model included the p53-MDM2, RaskEBnd
Rb-E2F pathways and was able to explain qualitatively soxigtieg experimental phenomena in tu-
morigenesis. One of our goals in this work is to integrateNR&B signaling pathway into our previous
NFkB-knockout model in order to explain recent results linkingrexpression of HMGB1 with a de-
crease of apoptosis (and increased cancer cell survival).

The NFB protein is involved in a variety of cellular processes liiding inflammation, cell prolif-
eration and apoptosis. Studies have shown thatBlis also a transcription factor for the pro-apoptotic
gene p53[]48], for anti-apoptotic genes, including Bcl-XA3] and for the cell-cycle regulatory proteins
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Figure 1: Schematic view of HMGB1 signal transduction. Bhogles represent tumor suppressor pro-
teins; red nodes represent oncoproteins/lipids; browresgdpresent protein complexes. Solid lines
with arrows denote protein transcription, degradationhamnges of molecular species; dashed lines with
arrows denote activation processes.

Myc and Cyclin D [20]. We aim to understand how the #B-pathway influences the HMGB1 signal
transduction pathway.

Recent experiments with mammalian cellsl[22, 36] have foosdllations of Nk B, activated by
tumor necrosis factor (TNF), with a time period in the ordéhours. Several mathematical models
based on ODEs were constructed to study the&BIBystem [2P[ 277, 32]. Since biological systems are
intrinsically stochastic, our goal is to study the oscilas of NFkB'’s expression level in the nucleus
and compare the stochastic simulation results with the OP&ists.

Finally, the NKB pathway is regulated by many proteins including A20, IKKdaNF«B. The
overexpression or mutation of IKK and KB [5,[11] occur frequently in many cancer types. We aim to
investigate how these proteins’ mutation or overexpressi@anges the cell’'s fate — apoptosis or survival.

3.2 Model Formulation

In Fig.[, we illustrate the crosstalk model of the HMGBL1 silymg pathway. It includes 44 molecular
species (nodes), 82 chemical reactions, and four couplimakng pathways: the RAS-ERK, Rb-E2F,
IKK-NF kB and p53-MDM2 pathways. We now briefly describe these siggalathways and their in-
terplay with the NIk B network. We denote activation (or promotion)-byand inhibition (or repression)
by .

The p53-MDM2 pathway is regulated by a negative feedbacg:ldd.R — PI3K — PIP3— AKT
— MDM2 - p53 — MDMZ2, and a positive feedback loop: p53 PTENH PIP3— AKT — MDM2 H
p53 — Apoptosis [[29]. The protein PI3K is activated by the tolldireceptors (TLR2/4)[45] and can
phosphorylate the lipid PIP2 to PIP3, leading to the phospation of AKT. The oncoprotein MDM2
can only reside in the cytoplasm before it is phosphoryldtgd®KT. The phosphorylated MDM2 can
enter the nucleus to bind with p53, inhibit p53’s transcoipal activity and target it for degradation.
The protein p53 can also induce the transcription of andtiraor suppressor protein, PTEN, which can
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hydrolyze PIP3 to PIP2 and inhibit the phosphorylation of M2

The RAS-ERK pathway is RAGE> RAS — RAF — MEK — ERK. Upon activation by HMGB1,
RAGE will activate the RAS proteins, leading to a cascadevehts including the activation and phos-
phorylation of the RAF, MEK and ERK1/2 proteins. The mutate®AS protein, a member of the RAS
protein family, can continuously activate the downstreath @ycle signaling pathways. The activated
ERK can enter the nucleus and phosphorylate transcripéiotoifs which induce the expression of cell
cycle regulatory proteins, such as Cyclin D and Myc (see Big.

The Rb-E2F pathway is Cyclin B Rb 4 E2F — Cyclin E- Rb. This pathway plays an important
role in the regulation of the G1-S phase transition in thé@glle. In particular, E2F is a transcription
factor that regulates the expression of a set of cell-cygipilatory genes [49]. In resting cells, E2F's
transcriptional activity is repressed by the unphosplateg Rb, a tumor suppressor protein, through the
formation of an Rb-E2F complex. The oncoproteins Cyclin O ktyc can phosphorylate the Rb protein,
which can then activate E2F. In turn, E2F activates the trgotton of Cyclin E and Cyclin-dependent
protein kinase 2 (CDK2), which promotes cell-cycle progias from G1 to S phase. Cyclin E can also
phosphorylate and inhibit Rb, leading to a forward positeedback loopl14Z, 37]. The protein INK4A
is another important tumor suppressor that can represgtivéyaof Cyclin D-CDK4/6 and inhibit E2F's
transcriptional activity and cell cycle progression. lkisown that INK4A is mutated in over 90% of
pancreatic cancerkl[3].

The NFkB pathway is regulated by two negative feedback loops: ThRKK - 1kB 4 NFkB —
IkB 4 NFkB, and NFkB — A20 4 IKK - IkB 4 NFkB. In the resting wild-type cells,kIB resides
only in the cytoplasm where it is bound to KB. Upon being activated by HMGB1, TLR2/4 can signal
via MyD88, IRAKs and TRAF to activate and transformB kinase (IKK) into its active form IKKa,
leading to the phosphorylation, ubiquitination and degtiath of IkB. The free NKkB rapidly enters
the nucleus to bind to specificB sites in the A20 anddB promoters, activating their expression. The
newly synthesizeddB enters the nucleus to bind to KB and takes it out into the cytoplasm to inhibit
its transcriptional activity. Moreover, the newly synttzesl A20 can also inhibit IKK’s activity, leading
to inhibition of NF«B.

Besides the main signal transduction, the interplay betvibese four signaling pathways can in-
fluence the cell's fate. As shown in Fig. 1, RAS can activate PiBK-AKT signaling pathway; ERK
and AKT can activate IKK in the NEB pathway. The tumor suppressor protein ARF, activated by th
overexpressed oncoprotein E2F, can bind to MDM2 to promstdegradation and stabilize p53's ex-
pression level, leading to apoptosis. Moreover, it has lanonstrated [46] that the p53-dependent
tumor suppressor proteins p21 and FBXW?7 can restrain thetgadf Cyclin D-CDK4/6 and Cyclin
E-CDK2 (only p21 is shown in Fidgl1 to represent both p21 an&X¥B'’s contribution). Mutations of
RAS, ARF, P21 and FBXW?7 have been found in many cancéls [3PEB is a transcription factor for
p53, Myc and Cyclin D, regulating cell proliferation and gpusis. The overexpression of MB occurs
in approximately 80% of lung cancer casksl| [43], and it is alsmmon in pancreatic cancéi [5]. Our
model and simulation will investigate how these mutatioms averexpressions affect the cell’s fate.

3.3 Simulation Models

Similar to the model in our previous work [18], in this modséé Fig[dL), all substrates are expressed in
terms of the number of molecules. A protein with the subscap, “ p” or “t” corresponds respectively
to active form, phosphorylated form or mRNA transcript of ffrotein. For example:

e AKT (AKT ) - unphosphorylated (phosphorylated) AKT.

e RAS (RAS) - inactive (active) RAS.
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e IKB; - mRNA transcript of kB.

We sometimes use CD to stand for the Cyclin D-CDK4/6 compB for the Cyclin E-CDK2 complex,
RE for the Rb-E2F complex, an&NF for the (kB|NFkB) or (IkB-NFkB) dimer. We also assume
that the total number of active and inactive forms of the RAGIER, PI3K, IKK, PIP, AKT, RAS, RAF,
MEK, ERK and NF«B molecules is constarit [118]. For example, AKRKT p = AKTqt, PIP24-PIP3=
PIRot and NFKB + NFkB,, + (IkB|NFkB) = NFK By.

We have formulated a reaction model corresponding to thaioes illustrated in Fid.l1 in the form of
rules specified in the BioNetGen language [21]. We use Hiltfions to describe the rate laws governing
the transcription of some proteins, including PTEN, MDM2,cihD (CD), Myc, E2F, CyclinE (CE),
A20 and kB, and use mass action rules for other reactions. We use lipEs@nd Gillespie’s stochastic
simulation algorithm (SSA)15] to simulate the same modighwBioNetGen. Stochastic simulation is
important because when the number of molecules involvetiérrgéactions is small, stochasticity and
discretization effects become more prominéni [17] 16, Bhg ODEs for the NkB-knockout HMGB1
model have been provided in our previous wark| [18]. The ODd#EglHe HMGB1-p53-Ras-NEB-Rb
crosstalk model are listed in the online supplementary nizdéd2]. We now give an example to illustrate
how to convert an ODE into BioNetGen rules. The ODE for thegphorylatedAKT — AKT,, is

%AKTp(t) = kaPIP3(t)AKT(t) — dsAKTp(t),

where the first term describes the phosphorylation of AKifiyated by PIP3. The second term describes
AKT , dephosphorylation. In BioNetGen, the molecule t#€T (a ~ U ~ p) has a component named
with state labeU (unphosphorylated) ang(phosphorylated). The BioNetGen rules for the ODE above
are:

AKT(a~U)+PIP3— AKT(a~ p)+PIP3 k4;

AKT(a~ p) — AKT(a~U) d4;

wherek, andd, are the constants for AKT phosphorylation and dephosphatioyl rates, respectively.
The interested reader can refer to the BioNetGen tutar@ fidr details. The BioNetGen code of our
model is available onliné1]. The model contains a large Ibenof undetermined parameters which are
difficult to estimate from available experimental data anfrthe literature. We emphasize that in this
work, the values for several undetermined parameterslliatfZ] have been chosen in order to produce
a qualitative agreement with previous experiments.

4 Simulation Results

To validate the properties of the HMGB1 signal transductioodel, we have conducted a series of
deterministic and stochastic simulations and comparedesults with known experimental facts. In
our model, the p53-MDM2 and N#B signaling pathways are regulated by two feedback loops. Re
cent experimental results have shown that p53's and Mpd/&xpression levels undergo oscillations in
response to stress signals. For example, oscillatioredasore than 72 hours aftgirradiation in Geva-
Zatorsky et al.’s experimenit [l14]. Also, Hoffmann’s expeeint found oscillations of NiB in response

to TNF stimulation, with four equally spaced peaks over thgrse of the 6-hour experiment [22].

We first conducted baseline simulations for several impogpaoteins involved in the HMGBL1 sig-
naling pathway. In our simulations, we set the initial valaethe number of HMGB1 molecules to be
10?; the nonzero initial values for other proteins are listedaible[]. The input parameters and reaction
descriptions are listed in the online supplementary melte[].

8



Model Checking and HMGB1 Gong, Zuliani, Komuravelli, Fagd&arke

x 10° AISSA x 10" B:SSA C:SSA
7 10
IKKa Ik B-NFK B | 5000 A20] |
6 NFk B 8 Ik Bp Ik B
é 5 V\A/\/J\/ 10000 1
(=]
° 6 8000
S 4
5
S 3 4 6000
o
§ > 4000
2
1 2000
(0] o (0]
o, 500 1000 0 500 1000 0 500 1000
x 10 D:ODE F:ODE

A20
12000 kB |
10000 1

8000

6000

4000

Number of Molecules

2000

(0]
0 500 1000 0 500 1000 o 500 1000
Time (min) Time (min) Time (min)

Figure 2: Number of IKKa, NkKB (A,D), IkBp, IkB-NFkB complex (B,E), kB and A20 (C,F)
molecules versus time for baseline simulations with SS&and ODE(D-F) models.

Table 1: Initial values for the proteins in the crosstalk mcaf HMGB1

Proteins | TLR | PI3K | PIP2| AKT | MDM2 | MDM2,, | p53 IkB-NFkB
# of Mol. | 10° 1 |10 | 1° | 10° 2x 100 | 2x10* | 10°
Proteins | RAGE | RAS | RAF | MEK | ERK RE IKK

# of Mol. | 10° 100 | 100 | 100 | 10 10 10°

In Fig.[d, we give the dynamic of the MiB, IKK, | kB-NFkB complex, kB, and A20 proteins us-
ing both stochastic simulation and ODEs. In Hif. 2 (A,D), we ¢hat IKK, upon being stimulated by
HMGBL1, is activated immediately by the TLR, AKT and ERK prioge This leads to the phosphoryla-
tion of IkB isoform (Fig[2 B,E), which in turn allows NEB to translocate into the nucleus. There, R\~
binds to the DNA and induces the transcription of th8 land A20 inhibitor genes (Fi@l 2 C,F). The syn-
thesized kB can enter the nucleus and recapturexiBiack into the cytoplasm to form the B-NFkB
complex. However,KB is continuously phosphorylated and degraded, resultiniga continued translo-
cation of NF«B. The stochastic simulation of HMGB1-induced KB oscillation depicted in Fig. 2A
fits very well with Nelson’s experimental resulfs [36] — theeitlation of NFkB continued for more than
20 hours after continuous TNFstimulation, damping slowly with a period of 60-100 minuté$ow-
ever, the ODEs simulation results in Hify. 2D show nai®Foscillation after 500 minutes, when the cell
reaches the resting state. The phosphorylatiorkBfleads to the decrease of theB-NFkB complex
in Fig.[A(B,E). The A20 protein can inactivate IKK to stabdithe kB-NFkB complex. The stochastic
simulation shows continuous oscillation (Hig. 2C) in 20 fspuput no oscillation is present in the ODE
simulation (Fig[RF) after 400 minutes. This discrepanoyvshthat in modeling signal transduction, it
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Figure 3: Number of IKKa, NkB, IkB-NFkB molecules versus time for baseline simulations in the
A20-knockout model.
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Figure 4: Overexpression of HMGBL1 leads to the increase ofADé&plication proteins Cyclin E and
Nuclear Factor NkB and the decrease of p53 with the SSA model.

is important to capture accurately both the discretizasiod stochasticity of chemical reactions. Similar
stochastic oscillations of p53 and MDM2 proteins are shawhé online supplementary materidls [2].

The A20 protein plays an important role in the regulationef NF«B network. It is known that
A20 knockout can result in severe inflammation and tissueag@nin multiple organg [24]. As Figl 3
shows, when A20 is knocked out, over 90% of IKK is activatedhiolr can then phosphorylate and
ubiquitinate kB. This leads to the disassembly of theB-NFkB dimer and liberation of NEB, which
rapidly translocates into the nucleus. The A20-knockositilts in Fig[B demonstrate that the oscillation
of NFkB dampens very quickly, with a small period compared to [B&. Phis phenomenon is consis-
tent with Mengelet al’s discovery that A20 can not only dampen the oscillationg,also control the
oscillation period of NkB [35]. So, the loss of A20 can destroy theB-NFk B negative feedback loop.
The precise role of the A20 negative feedback remains toumdsaited in future experiments.

A number of studies have found that overexpression of HMGRILies receptors is associated with
cancer[[12, 33]. Our recent MB-knockout HMGB1 model 18] qualitatively explained thepeximen-
tal result that overexpression of HMGB1 decreases apapswal promotes DNA replication and prolif-
eration in cancer cells. We now ask the following questiolmwttio the expression levels of HMGB1
and other proteins influence the cell’'s fate when the&kREignaling pathway is integrated?

10
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A: SSA x 10° B: SSA x10° C:SSA
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Figure 5: Overexpression of IKK lead to the increase of Gy8Bliand Nk B (A-B); overexpression of
NFkB increases Cyclin E and p53’s concentration (C).

In Fig.[, we varied the level of HMGBL1 to determine how it affe cell behavior. We increased
the number of HMGB1 molecules from 1 to®Gnd Cyclin E’s expression level at 300 minutes, and
the first maximum of p53 and NéB in phase G1 were measured using stochastic simulationthall
experiments were repeated 10 times per value to computegha and standard errors. In Hijy. 4, we see
that an increase of HMGBL1'’s initial value can increase thelmer of Cyclin E and NkB molecules,
and decrease p53's expression level. With respect to ouiopiemodel[[18], we see that the expression
level of Cyclin E and p53 are higher, since KB can induce the transcription of p53, Cyclin D and Myc,
which can activate the expression of Cyclin E during celleywrogression. Therefore, the knockout of
HMGBL1 and its receptors can inhibit the expression okBFand Cyclin E, leading to cell cycle arrest
or inhibition of cancer cell proliferation.

The expression of the IKK protein is elevated in many caneds {L1]. Since IKK regulates NEB'’s
DNA-binding activity, we investigated how the dynamic ofKKnfluences the expression levels of the
cell-cycle regulatory proteins Cyclin E and NB. We increased the number of IKK molecules and
measured Cyclin E’'s expression level at 300 minutes. As fekB| we measured two values: the
first maximum and the expression level at 300 minutes. InHi4,B) we see that with the increase
of IKK’s expression level, Cyclin E and N&’s concentrations increase quickly, since more active
IKK can promote NkB’s DNA-binding and transcriptional activity, acceleragithe progression of cell
proliferation or inflammation.

It has been observed that KB plays a key role in the development and progression of cance
including proliferation, migration and apoptosis [5]. Akant or constitutive NEB activation has been
detected in many canceis [5]43]. Furthermore, overexpres$s NF«B is very common in pancreatic
cancerl[|5]. In our model, we set the initial value for k&-to 0, so that NkB is only found in the form
of the transientAB-NFkB dimer. In Fig[5C, we increased the initial value @B-NFkB dimers and
measured the pro-apoptotic protein p53 and cell-cyclelagony protein Cyclin E’s expression level.
The results demonstrate that the overexpression afB\Néan increase Cyclin E’s concentration, thereby
promoting cancer cell proliferation. However, for the @oeptotic protein p53, the simulations show
that the amplitude of p53’s first maximum increases shargigmthe number of NEB-IkB dimers
is over 1¢. The expression level at 300 minutes (in the steady stataf)riest stable even when the
number of NFkB-IkB dimers reach 10 This is because p53's expression level is regulated by its
negative regulator MDM2 and stays at a low level in the rgsstate. Fig[l5 explains the experimental
discovery that the overexpression of IKK and fB-decreases apoptosis and promotes DNA replication
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Table 2: Verification of Property HMGBL1 = 10
Property:Pr-9[F'(NFKBn/NFKBo; > a)]

t(min) | a # of Samples # of Successes Result| Time (s)
30 04 | 22 22 True | 21.30
30 0.45| 92 87 True | 92.86
30 0.5 | 289 45 False | 537.74
60 0.65| 22 22 True | 26.76

and proliferation in cancer cellsl[5,111] (though KB could also induce the transcription of p53).

The results visualized in Fi@l 4 and FI[d. 5 provide some waymhibit tumor cell proliferation
and induce tumor cell apoptosis through inhibition or deatibn of the HMGB1 and NkB signaling
pathways. This can be achieved, for example, via the inbibif IKK and NFkB’s transcription activity
on Cyclin D and Myc. Recently, the targeting of IKK and IKKlaited kinases has become a popular
avenue for therapeutic interventions in can¢er [30]. litbitdrugs for Nk B’s upstream protein RAS
[34,[40], and downstream protein CDK, have also been deedltpinhibit tumor growth.

5 Verification of the HMBG1 Pathway

We applied statistical model checking to formally verifywsral important properties related to KB.
We first applied the Bayesian Hypothesis Testing method tdyvéhe properties in the stochastic
HMGB1 model. We tested whether our model satisfied a givenlBibperty with probabilityp > 0.9.
We set the Bayesian Hypothesis Testing thresfotd 1000, so the probability of a wrong answer was
smaller than 103

Property 1: It is known that Nk B in the nucleus increases quickly after8 is phosphorylated by
IKK, which is activated by HMGB1 after approximately 30-60mutes. LetR = g be the fraction
of NFkB molecules in the nucleus. We verified the following propert

Pr-oo[F (R>a)],

which informally means that the fraction of KB molecules in the nucleus will eventually be greater
than a threshold valua within t minutes. We verified this property with various valuesa@ndt. The
results are shown in Tale 2.

Property 2: The kB and A20 proteins, which are MiB'’s transcription targets, inhibit the expres-
sion of N« B, leading to the oscillation of NEB’s expression level. We verified the property

Pr-oo[F'(R>0.65 & F{(R< 0.20 & F{(R> 0.20 & F(R< 0.20))))] .

That is, the fraction of NEB molecules in the nucleus is oscillating will eventually be greater than
65% withint minutes, it will then fall below 20% within anothérminutes, will increase over 20%
within the followingt minutes, and will finally decrease to 20% within anotheninutes. We verified
this property with various values bfand HMGB1, and the results are shown in Tdble 3.

Property 3. A large proportion of PI3K, RAS and IKK molecules can be aatidd when the over-
expressed HMGB1 binds to RAGE and TLRs. We verified the falhgwproperty

Pr-0o[F G'®(PI3Ka/PI3Kor > 0.9 & RAS/RASy > 0.8 & I1KK,/IKKot > 0.6)],
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Table 3: Verification of Property 2
Property:Pr-o9[F'(R>0.65 & F'(R< 0.20 & F'(R> 0.20 & F'(R< 0.20))))]

HMGBL1 | t(min) | # of Samples # of Successes Result| Time (s)
107 45 13 1 False | 76.77
107 60 22 22 True | 111.76
107 75 104 o8 True | 728.65
10° 30 4 0 False | 5.76

Table 4: Verification of Property 3 and 4

Property 3 Property 4
t(min) | Samples| Successes Result| Time (s) || IKK Samples| Successes Result| Time (s)
90 9 0 False | 21.27 10° 22 22 True | 547.52
110 38 37 True [362.19 [[2x10°]9 2 False | 55.86
120 22 22 True | 214.38 | 17 4 0 False | 16.89

which means that 90% of PI3K, 80% of RAS and 60% of IKK will beéieated withint minutes, and
they will always stay above these values during the next 3shdthis property was tested with HMGB1
overexpressed (Bpand for various values afgiven in Tabld®.

Property 4: The overexpression of IKK can promote the translocation BkR into the nucleus,
induce the transcription of protein Cyclin D and Myc and l¢adhe overexpression of Cyclin E. We
verified the property

Pr0.0[F39°G3%(CyclinE >= 10,000)].

The results are presented in Table 4.

We also used the Bayesian interval estimation algorithnmetéopm a more accurate study of several
temporal properties. In Tablgd 5, we report the estimatesHerprobability that the HMGB1-N&B
model satisfies three temporal logic properties. We rangsis twith uniform prior and half-interval size
0 = 0.01 and coverage probability= 0.9. We can see from the computation time of the tables that
statistical model checking is feasible even with large tieametworks, such as the one under study.

6 Discussion

This paper is the first attempt to integrate thedsignaling pathway with the p53-MDM2 and Rb-E2F
pathways to study HMGB1 signal transduction at the singlidleeel. The NF«B pathway is important

Table 5: Bayesian Estimation of Temporal Logic Properties

IKK | Property Posterior Mean # of Samples Time (s)
10° | [FFU(NFkB,/NFkBy > 0.45)] | 0.9646 903 464
10° | [F®9(NFkB,/NFkBiy > 0.65 &

FOONFkB,/NFKBt < 0.2))] | 0.9363 689 1783
167 | [FPO9%G3Y(CyclinE >= 10,000)] | 0.0087 113 252.83

13



Model Checking and HMGB1 Gong, Zuliani, Komuravelli, Fagd&arke

because it regulates the transcription of many pro-apiopéotd anti-apoptotic proteins. Several exper-
iments were simulated using ODEs and Gillespie’s algoritimder a range of conditions, using the
BioNetGen language and simulator. We used statistical haeking to formally and automatically
validate our model with respect to a selection of temporapgrties. Model validation is performed
efficiently and in a scalable way, thereby promising to bsifda even for larger BioNetGen models.

Our stochastic simulations show that HMGB1-activated pems can generate sustained oscilla-
tions of irregular amplitude for several proteins inclgliNFkB, IKK and p53. These results are qual-
itatively confirmed by experiments on p53[14] and AB-[36]. The simulations also demonstrate a
dose-dependent p53, Cyclin E and &B-response curve to an increase in HMGBL1 stimulus, which is
gualitatively consistent with experimental observatiomgancer studies [26, 44]. In particular, over-
expression of HMGB1 can promote the expression of the celecsegulatory proteins Cyclin E and
NFkB. It can also inhibit the pro-apoptotic p53 protein, whiendead to increased cancer cell survival
and decreased apoptosis. We also investigated how theiomubatknockout of the IKK, A20 and NiB
proteins influence the fate of cancer cells.

Moreover, understanding of HMGB1 at the mechanistic lesedtill not clear, and reaction rates
for some proteins interactions in the four signaling patysMaave not been measured by experiments.
We have also made some simplifications and assumption in odeimFor example, the N@B protein
complex is composed of RelA(p65), RelB, cRel anddiA (p50), but we neglected the formation of the
NFkB complex in our HMGB1 model in order to make the model rekdtivsimple.

Our current HMGB1-Ras-p53-NéB-Rb crosstalk model compares qualitatively well with expe
ments, and can provide valuable information about the heha¥ HMGB1 signal transduction in re-
sponse to different stimuli. In the future we plan to imprduether our model with the help of new
experimental results. Furthermore, the use of model chgdieichniques will enable us identifying and
validating more realistic models.
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