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Abstract

We propose and analyze a rule-based model of the HMGB1 signaling pathway. The protein
HMGB1 can activate a number of regulatory networks – the p53,NFκB, Ras and Rb pathways –
that control many physiological processes of the cell. HMGB1 has been recently shown to be im-
plicated in cancer, inflammation and other diseases. In thispaper, we focus on the NFκB pathway
and construct a crosstalk model of the HMGB1-p53-NFκB-Ras-Rb network to investigate how these
couplings influence proliferation and apoptosis (programmed cell death) of cancer cells. We first built
a single-cell model of the HMGB1 network using the rule-based BioNetGen language. Then, we an-
alyzed and verified qualitative properties of the model by means of simulation and statistical model
checking. For model simulation, we used both ordinary differential equations and Gillespie’s stochas-
tic simulation algorithm. Statistical model checking enabled us to verify our model with respect to
behavioral properties expressed in temporal logic. Our analysis showed that HMGB1-activated re-
ceptors can generate sustained oscillations of irregular amplitude for the NFκB, IκB, A20 and p53
proteins. Also, knockout of A20 can destroy the IκB-NFκB negative feedback loop, leading to the
development of severe inflammation or cancer. Our model alsopredicted that the knockout or over-
expression of the IκB kinase can influence the cancer cell’s fate – apoptosis or survival – through the
crosstalk of different pathways. Finally, our work shows that computational modeling and statistical
model checking can be effectively combined in the study of biological signaling pathways.

1 Introduction

Computational modeling is increasingly used to gain insights into the behavior of complex biological
systems, such as signaling pathways. Moreover, powerful verification methods (e.g., model checking
[8]) from the field of hardware verification have been recently applied to the analysis of biological sys-
tem models. In this paper we build a single-cell model of the HMGB1 pathway using the rule-based
BioNetGen language [21], and use statistical model checking to formally verify interesting properties of
our model. We argue that computational modeling and statistical model checking can be combined into
an effective tool for analyzing the emergent behavior of complex signaling pathways. In particular, the
use of statistical model checking enables us to tackle largesystems in a scalable way.

The High-Mobility Group Box-1 (HMGB1) protein is released from necrotic cells or secreted by
activated macrophages engulfing apoptotic cells [12]. Recent studies have shown that HMGB1 and its
receptors, including the Receptor for Advanced Glycation End products (RAGEs) and Toll-Like Recep-
tors (TLRs), are implicated in cancer, inflammation and other diseases [10, 41]. Elevated expression of
HMGB1 occurs in various types of tumors, including colon, pancreatic, and breast cancer [12, 33, 44].
HMGB1 can activate a number of regulatory networks – the PI3K/AKT, NFκB, and Ras pathways –
which control many physiological processes including cellcycle arrest, apoptosis and proliferation. The
cell cycle is strictly regulated and controlled by a number of signaling pathways that ensure cell prolif-
eration occurs only when it is required by the organism as a whole [19]. Overexpression of HMGB1 can
continuously activate cell-growth signaling pathways even if there are protein mutations or DNA dam-
age, possibly leading to the occurrence of cancer in the future. Recentin vitro studies with pancreatic
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cancer cells [26] have shown that the targeted knockout or inhibition of HMGB1 and its receptor RAGE
can increase apoptosis and suppress cancer cell growth. This phenomenon has also been observed with
lung cancer and other types of cancer cells [4, 12].

Model Checking [7, 8] is one of the most widely used techniques for the automated verification
and analysis of hardware and software systems. System models are usually expressed as state-transition
diagrams and a temporal logic is used to describe the desiredproperties (specifications) of system execu-
tions. A typical property stated in temporal logic isG(grant req→ Fack), meaning that, it is always (G
= globally) true that a grant request eventually (F = future) triggers an acknowledgment. One important
aspect of Model Checking is that it can be performed algorithmically – user intervention is limited to
providing a system model and a property to check. Because biological systems are often probabilistic in
nature, we make use ofstatisticalmodel checking, a technique tailored to the verification of stochastic
systems (see Section 2).

In [18], we proposed the first model of HMGB1 signal transduction, based on known signaling path-
way studies [6, 38, 47]. The model was used to investigate theimportance of HMGB1 in tumorigenesis.
In this work, we propose a single-cell model of the HMGB1 signaling pathway, which includes the NFκB
pathway and a crosstalk model of the HMGB1-p53-NFκB-Ras-Rb network. The model is described by
means of the rule-based BioNetGen language [21]. We analyzeand verify qualitative properties of the
model using simulation and statistical model checking. Formodel simulation, we use both ordinary
differential equations (ODEs) and Gillespie’s stochasticsimulation algorithm [15]. Statistical model
checking enables us to verify our model with respect to behavioral properties expressed in temporal
logic.

Our baseline simulations show that HMGB1-activated receptors can generate sustained oscillations
of irregular amplitude for the NFκB, IκB, IKK and A20 proteins. However, mutation or knockout
of the A20 protein can destroy the IκB-NFκB negative feedback loop, leading to the development of
severe inflammation or cancer. Further analysis shows that overexpression of HMGB1 can up-regulate
the oncoproteins NFκB and Cyclin E (which regulate cell proliferation), but down-regulate the tumor-
suppressor protein p53 (which regulates cell apoptosis). Also, overexpression of NFκB can increase the
expression level of both Cyclin E and p53. Our model also predicts that the knockout or overexpression
of the IκB kinase (IKK) can influence the cancer cell’s fate – apoptosis or survival – through the crosstalk
of different pathways. To the best of the authors’ knowledge, this work is the first attempt to integrate
the NFκB, p53, Ras, and Rb signaling pathways activated by HMGB1 in one rule-based model.

2 Statistical Model Checking

In the past few years, there has been growing interest in the formal verification of stochastic systems, and
biological systems in particular [25, 28, 39], by means of model checking techniques. The verification
problem is to decide whether a stochastic model satisfies a temporal logic property with aprobability
greater than or equal to a certain threshold. To express properties, we use a temporal logic in which the
temporal operators are equipped withbounds. For example, the property “p53 will always stay below
30 in the next 80 time units” is written asG80(p53 < 30). We ask whether our stochastic systemM
satisfies that formula with a probability greater than or equal to a fixed threshold (say 0.99), and we write
M |= Pr>0.99[G80(p53< 30)]. Such questions can be answered byStatistical Model Checking[50], the
technique we use for verifying BioNetGen models simulated by Gillespie’s algorithm.

Statistical model checking treats the verification problemas a statistical inference problem and solves
it by randomized sampling of traces (simulations) from the model. In particular, the inference problem
can be solved by means of hypothesis testing or estimation. The former amounts to deciding between
two hypotheses –M |= Pr>θ [φ ] versusM |= Pr<θ [φ ], whereθ is a given probability threshold andφ is a
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temporal logic property. The latter, instead, approximates probabilistically (that is, it computes with high
probability anestimateclose to) the true probabilityp thatφ holds, and then compares that estimate with
θ . In both approaches, sampled traces are model checked individually to determine whether propertyφ
holds, and the number of satisfying traces is used by the hypothesis testing (or estimation) procedure to
decide betweenp > θ and p < θ . (In the case of estimation, one also has an estimate that is close to
p with high probability.) Note that statistical model checking cannot guarantee a correct answer to the
verification problem. However, the probability of giving a wrong answer can be arbitrarily bounded by
the user.

In the next section we describe the temporal logic used in this work, Bounded Linear Temporal Logic
(BLTL) [25, 51].

2.1 Bounded Linear Temporal Logic

Let SV be a finite set of real-valued variables. An atomic proposition AP is a boolean predicate of the
form e1 ∼ e2, wheree1 ande2 are arithmethic expressions over variables inSV, and∼ is either≥, ≤, or
=. A BLTL property is built over atomic propositions using boolean connectives and bounded temporal
operators. The syntax of the logic is the following:

φ ::= AP | φ1∨φ2 | φ1∧φ2 | ¬φ1 | φ1Utφ2.

The bounded until operatorφ1Utφ2 requires that,within timet, φ2 will be true andφ1 will hold until then.
Bounded versions of theF andG operators can be easily defined:Ftφ = trueUtφ requiresφ to hold true
within time t; Gtφ = ¬Ft¬φ requiresφ to hold true up to timet.

The semantics of BLTL is defined with respect totraces(or executions) of a system. In our case, a
trace will be the output of a BioNetGen model simulated by Gillespie’s algorithm. Formally, a trace is a
sequence of time-stamped state transitions of the formσ = (s0, t0),(s1, t1), ..., where(si , ti) denotes that
the system moved to statesi+1 after having sojourned forti time units in statesi . The fact that a traceσ
satisfies the BLTL propertyφ is writtenσ |= φ . We denote the trace suffix starting at stepk by σ k. We
have the following semantics of BLTL:

• σ k |= AP if and only if APholds true in statesk;

• σ k |= φ1∨φ2 if and only if σ k |= φ1 or σ k |= φ2;

• σ k |= φ1∧φ2 if and only if σ k |= φ1 andσ k |= φ2;

• σ k |= ¬φ1 if and only if σ k |= φ1 does not hold;

• σ k |= φ1Utφ2 if and only if there existsi ∈ N such that, (a)∑0≤l<i tk+l ≤ t, (b) σ k+i |= φ2 and (c)
for each 0≤ j < i, σ k+ j |= φ1.

Note that the semantics of BLTL is defined overinfinite traces, while of course any simulation trace must
be finite in length. It can be shown that traces of an appropriate (finite) length are sufficient to decide
BLTL properties. The interested reader can find details elsewhere [51].

2.2 Bayesian Statistical Model Checking

We recently introduced sequential Bayesian hypothesis testing and estimation techniques and applied
them to the verification of signaling pathways and other stochastic systems [25, 51]. Sequential sampling
means that the number of sampled traces is not fixed a priori, but it is instead determined at “run-time,”
depending on the evidence gathered by the samples seen so far. This often leads to a significantly smaller
number of sampled traces. Both approaches are based on Bayes’ theorem, which enables us to use prior
information about the model being verified, where available. We now briefly describe both techniques.
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Bayesian Hypothesis Testing. The hypothesis test is based on the Bayes Factor, which is thelikeli-
hood ratio of the sampled data with respect to the two hypotheses. For statistical model checking, the
hypotheses being tested areH0 : p > θ andH1 : p < θ , wherep is the (unknown) probability that our
model satisfies a given property, andθ is a probability threshold. Formally, the Bayes Factor of data
d and hypothesesH0 andH1 is B = Pr(d|H0)

Pr(d|H1)
. Therefore,B can be interpreted as a measure of evidence

(given by the datad) in favor of H0. Now, fix an evidence thresholdT > 1. Our algorithm iteratively
draws independent and identically distributed (iid) sample tracesσ1,σ2, ..., and checks whether they
satisfyφ . After each trace, the algorithm computes the Bayes FactorB to check if it has obtained con-
clusive evidence. The algorithm acceptsH0 if B > T, and rejectsH0 (acceptingH1) if B < 1

T . Otherwise
(if 1

T 6 B 6 T), it continues drawing iid samples. It can be shown that when the algorithm terminates,
the probability of a wrong answer is bounded above by1

T . The algorithm is shown below in Algorithm 1
– full details can be found elsewhere [51].

Algorithm 1 Statistical Model Checking by Bayesian Hypothesis Testing
Require: BLTL Propertyφ , Probability thresholdθ ∈ (0,1), ThresholdT > 1, Prior densityg for un-

known parameterp

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfyingφ so far}
loop

σ := draw a sample trace of the system (iid)
n := n+1
if σ |= φ then

x := x+1
end if
B := BayesFactor(n,x) {compute the Bayes Factor}
if (B > T) then

return H0 accepted
else if (B < 1

T ) then
return H1 accepted

end if
end loop

Bayesian Interval Estimation. Recall that in estimation, we are interested in computing a value (an
estimate) which is close top with high probability, the true probability that the model satisfies the prop-
erty. The estimate is usually in the form of a confidence interval – an interval in[0,1] which contains
p with high probability. Our estimation method follows directly from Bayes’ theorem. Given a prior
distribution overp and sampled data, Bayes’ theorem enables us to obtain theposteriordistribution of
p (i.e., the distribution ofp given the data sampled and the prior). This means that we can estimate
p with the mean of the posterior distribution. Furthermore, by integrating the posterior over a suitably
chosen interval, we can compute a Bayes interval estimate with any given confidence coefficient. Fix
a confidencec ∈ (1

2,1) and a half-widthδ ∈ (0, 1
2). Our algorithm iteratively draws iid traces, checks

whether they satisfyφ , and builds an interval of total width 2δ , centered on the posterior mean. If the
integral of the posterior over this interval is greater thanc, the algorithm stops; otherwise, it continues
sampling. The algorithm is given in Algorithm 2. Again, fulldetails are given in [51].
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Algorithm 2 Statistical Model Checking by Bayesian Interval Estimates

Require: BLTL Propertyφ , half-interval sizeδ ∈ (0, 1
2), interval coefficientc∈ (1

2,1), Prior Beta dis-
tribution with parametersα ,β

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfyingφ so far}
repeat

σ := draw a sample trace of the system (iid)
n := n+1
if σ |= φ then

x := x+1
end if
p̂ := (x+ α)/(n+ α + β ) {compute posterior mean}
(t0, t1) := (p̂−δ , p̂+ δ ) {compute interval estimate}
if t1 > 1 then

(t0, t1) := (1−2·δ ,1)
else if t0 < 0 then

(t0, t1) := (0,2·δ )
end if
{compute posterior probability of p∈ (t0, t1)}
γ := PosteriorProb(t0, t1)

until (γ > c)
return (t0, t1), p̂

3 Crosstalk Model of HMGB1

Apoptosis and cell proliferation are two important processes in cancer and are respectively regulated by
two proteins – p53 and Cyclin E – acting in two different signaling pathways. The protein p53 is a tumor
suppressor whose activation can lead to cell cycle arrest, DNA repair or apoptosis. Cyclin E is a cell
cycle regulatory protein that regulates the G1-S phase transition during cell proliferation. The behavior
of these two signaling pathways can be influenced by crosstalk or coupling with other pathways and
proteins.

3.1 Motivations

Experimental studies have shown that HMGB1 can activate three fundamental downstream signaling
pathways: the PI3K/AKT, RAS-ERK and NFκB pathways. These in turn lead to the activation of two
other signaling pathways: the p53-MDM2 and Rb-E2F pathways, which regulate apoptosis and cell
proliferation, respectively. In [18], we proposed the firstcomputational model for HMGB1 signal trans-
duction (also called the NFκB-knockout model). The model included the p53-MDM2, Ras-ERK, and
Rb-E2F pathways and was able to explain qualitatively some existing experimental phenomena in tu-
morigenesis. One of our goals in this work is to integrate theNFκB signaling pathway into our previous
NFκB-knockout model in order to explain recent results linkingoverexpression of HMGB1 with a de-
crease of apoptosis (and increased cancer cell survival).

The NFκB protein is involved in a variety of cellular processes, including inflammation, cell prolif-
eration and apoptosis. Studies have shown that NFκB is also a transcription factor for the pro-apoptotic
gene p53 [48], for anti-apoptotic genes, including Bcl-XL [23] and for the cell-cycle regulatory proteins
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Figure 1: Schematic view of HMGB1 signal transduction. Bluenodes represent tumor suppressor pro-
teins; red nodes represent oncoproteins/lipids; brown nodes represent protein complexes. Solid lines
with arrows denote protein transcription, degradation or changes of molecular species; dashed lines with
arrows denote activation processes.

Myc and Cyclin D [20]. We aim to understand how the NFκB pathway influences the HMGB1 signal
transduction pathway.

Recent experiments with mammalian cells [22, 36] have foundoscillations of NFκB, activated by
tumor necrosis factor (TNF), with a time period in the order of hours. Several mathematical models
based on ODEs were constructed to study the NFκB system [22, 27, 32]. Since biological systems are
intrinsically stochastic, our goal is to study the oscillations of NFκB’s expression level in the nucleus
and compare the stochastic simulation results with the ODEsresults.

Finally, the NFκB pathway is regulated by many proteins including A20, IKK and NFκB. The
overexpression or mutation of IKK and NFκB [5, 11] occur frequently in many cancer types. We aim to
investigate how these proteins’ mutation or overexpression changes the cell’s fate – apoptosis or survival.

3.2 Model Formulation

In Fig. 1, we illustrate the crosstalk model of the HMGB1 signaling pathway. It includes 44 molecular
species (nodes), 82 chemical reactions, and four coupling signaling pathways: the RAS-ERK, Rb-E2F,
IKK-NFκB and p53-MDM2 pathways. We now briefly describe these signaling pathways and their in-
terplay with the NFκB network. We denote activation (or promotion) by→ and inhibition (or repression)
by ⊣.

The p53-MDM2 pathway is regulated by a negative feedback loop: TLR → PI3K → PIP3→ AKT
→ MDM2 ⊣ p53→ MDM2, and a positive feedback loop: p53→ PTEN⊣ PIP3→ AKT → MDM2 ⊣
p53→ Apoptosis [29]. The protein PI3K is activated by the toll-like receptors (TLR2/4) [45] and can
phosphorylate the lipid PIP2 to PIP3, leading to the phosphorylation of AKT. The oncoprotein MDM2
can only reside in the cytoplasm before it is phosphorylatedby AKT. The phosphorylated MDM2 can
enter the nucleus to bind with p53, inhibit p53’s transcriptional activity and target it for degradation.
The protein p53 can also induce the transcription of anothertumor suppressor protein, PTEN, which can
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hydrolyze PIP3 to PIP2 and inhibit the phosphorylation of MDM2.
The RAS-ERK pathway is RAGE→ RAS→ RAF → MEK → ERK. Upon activation by HMGB1,

RAGE will activate the RAS proteins, leading to a cascade of events including the activation and phos-
phorylation of the RAF, MEK and ERK1/2 proteins. The mutatedK-RAS protein, a member of the RAS
protein family, can continuously activate the downstream cell cycle signaling pathways. The activated
ERK can enter the nucleus and phosphorylate transcription factors which induce the expression of cell
cycle regulatory proteins, such as Cyclin D and Myc (see Fig.1).

The Rb-E2F pathway is Cyclin D⊣ Rb⊣ E2F→ Cyclin E⊣ Rb. This pathway plays an important
role in the regulation of the G1-S phase transition in the cell cycle. In particular, E2F is a transcription
factor that regulates the expression of a set of cell-cycle regulatory genes [49]. In resting cells, E2F’s
transcriptional activity is repressed by the unphosphorylated Rb, a tumor suppressor protein, through the
formation of an Rb-E2F complex. The oncoproteins Cyclin D and Myc can phosphorylate the Rb protein,
which can then activate E2F. In turn, E2F activates the transcription of Cyclin E and Cyclin-dependent
protein kinase 2 (CDK2), which promotes cell-cycle progression from G1 to S phase. Cyclin E can also
phosphorylate and inhibit Rb, leading to a forward positivefeedback loop [42, 37]. The protein INK4A
is another important tumor suppressor that can repress the activity of Cyclin D-CDK4/6 and inhibit E2F’s
transcriptional activity and cell cycle progression. It isknown that INK4A is mutated in over 90% of
pancreatic cancers [3].

The NFκB pathway is regulated by two negative feedback loops: TLR→ IKK ⊣ IκB ⊣ NFκB →
IκB ⊣ NFκB, and NFκB → A20 ⊣ IKK ⊣ IκB ⊣ NFκB. In the resting wild-type cells, IκB resides
only in the cytoplasm where it is bound to NFκB. Upon being activated by HMGB1, TLR2/4 can signal
via MyD88, IRAKs and TRAF to activate and transform IκB kinase (IKK) into its active form IKKa,
leading to the phosphorylation, ubiquitination and degradation of IκB. The free NFκB rapidly enters
the nucleus to bind to specificκB sites in the A20 and IκB promoters, activating their expression. The
newly synthesized IκB enters the nucleus to bind to NFκB and takes it out into the cytoplasm to inhibit
its transcriptional activity. Moreover, the newly synthesized A20 can also inhibit IKK’s activity, leading
to inhibition of NFκB.

Besides the main signal transduction, the interplay between these four signaling pathways can in-
fluence the cell’s fate. As shown in Fig. 1, RAS can activate the PI3K-AKT signaling pathway; ERK
and AKT can activate IKK in the NFκB pathway. The tumor suppressor protein ARF, activated by the
overexpressed oncoprotein E2F, can bind to MDM2 to promote its degradation and stabilize p53’s ex-
pression level, leading to apoptosis. Moreover, it has beendemonstrated [46] that the p53-dependent
tumor suppressor proteins p21 and FBXW7 can restrain the activity of Cyclin D-CDK4/6 and Cyclin
E-CDK2 (only p21 is shown in Fig. 1 to represent both p21 and FBXW7’s contribution). Mutations of
RAS, ARF, P21 and FBXW7 have been found in many cancers [3, 9].NFκB is a transcription factor for
p53, Myc and Cyclin D, regulating cell proliferation and apoptosis. The overexpression of NFκB occurs
in approximately 80% of lung cancer cases [43], and it is alsocommon in pancreatic cancer [5]. Our
model and simulation will investigate how these mutations and overexpressions affect the cell’s fate.

3.3 Simulation Models

Similar to the model in our previous work [18], in this model (see Fig. 1), all substrates are expressed in
terms of the number of molecules. A protein with the subscript “a”, “ p” or “ t” corresponds respectively
to active form, phosphorylated form or mRNA transcript of the protein. For example:

• AKT (AKT p) - unphosphorylated (phosphorylated) AKT.

• RAS (RASa) - inactive (active) RAS.
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• IκBt - mRNA transcript of IκB.

We sometimes use CD to stand for the Cyclin D-CDK4/6 complex,CE for the Cyclin E-CDK2 complex,
RE for the Rb-E2F complex, and IκNF for the (IκB|NFκB) or (IκB-NFκB) dimer. We also assume
that the total number of active and inactive forms of the RAGE, TLR, PI3K, IKK, PIP, AKT, RAS, RAF,
MEK, ERK and NFκB molecules is constant [18]. For example, AKT+AKT p = AKT tot, PIP2+PIP3=
PIPtot and NFκB + NFκBn + (IκB|NFκB) = NFκBtot.

We have formulated a reaction model corresponding to the reactions illustrated in Fig. 1 in the form of
rules specified in the BioNetGen language [21]. We use Hill functions to describe the rate laws governing
the transcription of some proteins, including PTEN, MDM2, CyclinD (CD), Myc, E2F, CyclinE (CE),
A20 and IκB, and use mass action rules for other reactions. We use both ODEs and Gillespie’s stochastic
simulation algorithm (SSA) [15] to simulate the same model with BioNetGen. Stochastic simulation is
important because when the number of molecules involved in the reactions is small, stochasticity and
discretization effects become more prominent [17, 16, 31].The ODEs for the NFκB-knockout HMGB1
model have been provided in our previous work [18]. The ODEs for the HMGB1-p53-Ras-NFκB-Rb
crosstalk model are listed in the online supplementary materials [2]. We now give an example to illustrate
how to convert an ODE into BioNetGen rules. The ODE for the phosphorylatedAKT – AKTp is

d
dt

AKTp(t) = k4PIP3(t)AKT(t)−d4AKTp(t),

where the first term describes the phosphorylation of AKT, activated by PIP3. The second term describes
AKT p dephosphorylation. In BioNetGen, the molecule typeAKT(a∼U ∼ p) has a component nameda
with state labelU (unphosphorylated) andp (phosphorylated). The BioNetGen rules for the ODE above
are:

AKT(a∼U)+PIP3→ AKT(a∼ p)+PIP3 k4;

AKT(a∼ p) → AKT(a∼U) d4;

wherek4 andd4 are the constants for AKT phosphorylation and dephosphorylation rates, respectively.
The interested reader can refer to the BioNetGen tutorial [13] for details. The BioNetGen code of our
model is available online [1]. The model contains a large number of undetermined parameters which are
difficult to estimate from available experimental data or from the literature. We emphasize that in this
work, the values for several undetermined parameters listed in [2] have been chosen in order to produce
a qualitative agreement with previous experiments.

4 Simulation Results

To validate the properties of the HMGB1 signal transductionmodel, we have conducted a series of
deterministic and stochastic simulations and compared ourresults with known experimental facts. In
our model, the p53-MDM2 and NFκB signaling pathways are regulated by two feedback loops. Re-
cent experimental results have shown that p53’s and MDM2p’s expression levels undergo oscillations in
response to stress signals. For example, oscillations lasted more than 72 hours afterγ irradiation in Geva-
Zatorsky et al.’s experiment [14]. Also, Hoffmann’s experiment found oscillations of NFκB in response
to TNF stimulation, with four equally spaced peaks over the course of the 6-hour experiment [22].

We first conducted baseline simulations for several important proteins involved in the HMGB1 sig-
naling pathway. In our simulations, we set the initial valuefor the number of HMGB1 molecules to be
102; the nonzero initial values for other proteins are listed inTable 1. The input parameters and reaction
descriptions are listed in the online supplementary materials [2].
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Figure 2: Number of IKKa, NFκB (A,D), IκBp, IκB-NFκB complex (B,E), IκB and A20 (C,F)
molecules versus time for baseline simulations with SSA(A-C) and ODE(D-F) models.

Table 1: Initial values for the proteins in the crosstalk model of HMGB1

Proteins TLR PI3K PIP2 AKT MDM2 MDM2p p53 IκB-NFκB
# of Mol. 103 105 105 105 104 2×104 2×104 105

Proteins RAGE RAS RAF MEK ERK RE IKK
# of Mol. 103 104 104 104 104 104 105

In Fig. 2, we give the dynamic of the NFκB, IKK, I κB-NFκB complex, IκB, and A20 proteins us-
ing both stochastic simulation and ODEs. In Fig. 2 (A,D), we see that IKK, upon being stimulated by
HMGB1, is activated immediately by the TLR, AKT and ERK proteins. This leads to the phosphoryla-
tion of IκB isoform (Fig. 2 B,E), which in turn allows NFκB to translocate into the nucleus. There, NFκB
binds to the DNA and induces the transcription of the IκB and A20 inhibitor genes (Fig. 2 C,F). The syn-
thesized IκB can enter the nucleus and recapture NFκB back into the cytoplasm to form the IκB-NFκB
complex. However, IκB is continuously phosphorylated and degraded, resulting in the continued translo-
cation of NFκB. The stochastic simulation of HMGB1-induced NFκB oscillation depicted in Fig. 2A
fits very well with Nelson’s experimental results [36] – the oscillation of NFκB continued for more than
20 hours after continuous TNFα stimulation, damping slowly with a period of 60-100 minutes. How-
ever, the ODEs simulation results in Fig. 2D show no NFκB oscillation after 500 minutes, when the cell
reaches the resting state. The phosphorylation of IκB leads to the decrease of the IκB-NFκB complex
in Fig. 2(B,E). The A20 protein can inactivate IKK to stabilize the IκB-NFκB complex. The stochastic
simulation shows continuous oscillation (Fig. 2C) in 20 hours, but no oscillation is present in the ODE
simulation (Fig. 2F) after 400 minutes. This discrepancy shows that in modeling signal transduction, it
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Figure 3: Number of IKKa, NFκB, IκB-NFκB molecules versus time for baseline simulations in the
A20-knockout model.
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Figure 4: Overexpression of HMGB1 leads to the increase of DNA replication proteins Cyclin E and
Nuclear Factor NFκB and the decrease of p53 with the SSA model.

is important to capture accurately both the discretizationand stochasticity of chemical reactions. Similar
stochastic oscillations of p53 and MDM2 proteins are shown in the online supplementary materials [2].

The A20 protein plays an important role in the regulation of the NFκB network. It is known that
A20 knockout can result in severe inflammation and tissue damage in multiple organs [24]. As Fig. 3
shows, when A20 is knocked out, over 90% of IKK is activated, which can then phosphorylate and
ubiquitinate IκB. This leads to the disassembly of the IκB-NFκB dimer and liberation of NFκB, which
rapidly translocates into the nucleus. The A20-knockout results in Fig. 3 demonstrate that the oscillation
of NFκB dampens very quickly, with a small period compared to Fig. 2A. This phenomenon is consis-
tent with Mengelet al.’s discovery that A20 can not only dampen the oscillations, but also control the
oscillation period of NFκB [35]. So, the loss of A20 can destroy the IκB-NFκB negative feedback loop.
The precise role of the A20 negative feedback remains to be elucidated in future experiments.

A number of studies have found that overexpression of HMGB1 and its receptors is associated with
cancer [12, 33]. Our recent NFκB-knockout HMGB1 model [18] qualitatively explained the experimen-
tal result that overexpression of HMGB1 decreases apoptosis and promotes DNA replication and prolif-
eration in cancer cells. We now ask the following question: How do the expression levels of HMGB1
and other proteins influence the cell’s fate when the NFκB signaling pathway is integrated?
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In Fig. 4, we varied the level of HMGB1 to determine how it affects cell behavior. We increased
the number of HMGB1 molecules from 1 to 106, and Cyclin E’s expression level at 300 minutes, and
the first maximum of p53 and NFκB in phase G1 were measured using stochastic simulation. Allthe
experiments were repeated 10 times per value to compute the mean and standard errors. In Fig. 4, we see
that an increase of HMGB1’s initial value can increase the number of Cyclin E and NFκB molecules,
and decrease p53’s expression level. With respect to our previous model [18], we see that the expression
level of Cyclin E and p53 are higher, since NFκB can induce the transcription of p53, Cyclin D and Myc,
which can activate the expression of Cyclin E during cell cycle progression. Therefore, the knockout of
HMGB1 and its receptors can inhibit the expression of NFκB and Cyclin E, leading to cell cycle arrest
or inhibition of cancer cell proliferation.

The expression of the IKK protein is elevated in many cancer cells [11]. Since IKK regulates NFκB’s
DNA-binding activity, we investigated how the dynamic of IKK influences the expression levels of the
cell-cycle regulatory proteins Cyclin E and NFκB. We increased the number of IKK molecules and
measured Cyclin E’s expression level at 300 minutes. As for NFκB, we measured two values: the
first maximum and the expression level at 300 minutes. In Fig.5(A,B) we see that with the increase
of IKK’s expression level, Cyclin E and NFκB’s concentrations increase quickly, since more active
IKK can promote NFκB’s DNA-binding and transcriptional activity, accelerating the progression of cell
proliferation or inflammation.

It has been observed that NFκB plays a key role in the development and progression of cancer,
including proliferation, migration and apoptosis [5]. Aberrant or constitutive NFκB activation has been
detected in many cancers [5, 43]. Furthermore, overexpression of NFκB is very common in pancreatic
cancer [5]. In our model, we set the initial value for NFκB to 0, so that NFκB is only found in the form
of the transient IκB-NFκB dimer. In Fig. 5C, we increased the initial value of IκB-NFκB dimers and
measured the pro-apoptotic protein p53 and cell-cycle regulatory protein Cyclin E’s expression level.
The results demonstrate that the overexpression of NFκB can increase Cyclin E’s concentration, thereby
promoting cancer cell proliferation. However, for the pro-apoptotic protein p53, the simulations show
that the amplitude of p53’s first maximum increases sharply when the number of NFκB-IκB dimers
is over 104. The expression level at 300 minutes (in the steady state) isalmost stable even when the
number of NFκB-IκB dimers reach 106. This is because p53’s expression level is regulated by its
negative regulator MDM2 and stays at a low level in the resting state. Fig. 5 explains the experimental
discovery that the overexpression of IKK and NFκB decreases apoptosis and promotes DNA replication
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Table 2: Verification of Property 1 (HMGB1= 102)
Property:Pr>0.9[Ft(NFκBn/NFκBtot > a)]

t(min) a # of Samples # of Successes Result Time (s)
30 0.4 22 22 True 21.30
30 0.45 92 87 True 92.86
30 0.5 289 45 False 537.74
60 0.65 22 22 True 26.76

and proliferation in cancer cells [5, 11] (though NFκB could also induce the transcription of p53).
The results visualized in Fig. 4 and Fig. 5 provide some ways to inhibit tumor cell proliferation

and induce tumor cell apoptosis through inhibition or deactivation of the HMGB1 and NFκB signaling
pathways. This can be achieved, for example, via the inhibition of IKK and NFκB’s transcription activity
on Cyclin D and Myc. Recently, the targeting of IKK and IKK-related kinases has become a popular
avenue for therapeutic interventions in cancer [30]. Inhibitor drugs for NFκB’s upstream protein RAS
[34, 40], and downstream protein CDK, have also been developed to inhibit tumor growth.

5 Verification of the HMBG1 Pathway

We applied statistical model checking to formally verify several important properties related to NFκB.
We first applied the Bayesian Hypothesis Testing method to verify the properties in the stochastic
HMGB1 model. We tested whether our model satisfied a given BLTL property with probabilityp> 0.9.
We set the Bayesian Hypothesis Testing thresholdT = 1000, so the probability of a wrong answer was
smaller than 10−3.

Property 1: It is known that NFκB in the nucleus increases quickly after IκB is phosphorylated by
IKK, which is activated by HMGB1 after approximately 30-60 minutes. LetR= NFκBn

NFκBtot
be the fraction

of NFκB molecules in the nucleus. We verified the following property

Pr>0.9[Ft(R> a)],

which informally means that the fraction of NFκB molecules in the nucleus will eventually be greater
than a threshold valuea within t minutes. We verified this property with various values ofa andt. The
results are shown in Table 2.

Property 2: The IκB and A20 proteins, which are NFκB’s transcription targets, inhibit the expres-
sion of NFκB, leading to the oscillation of NFκB’s expression level. We verified the property

Pr>0.9[Ft(R> 0.65 & Ft(R6 0.20 & Ft(R> 0.20 & Ft(R6 0.20))))] .

That is, the fraction of NFκB molecules in the nucleus is oscillating:R will eventually be greater than
65% within t minutes, it will then fall below 20% within anothert minutes, will increase over 20%
within the following t minutes, and will finally decrease to 20% within anothert minutes. We verified
this property with various values oft and HMGB1, and the results are shown in Table 3.

Property 3: A large proportion of PI3K, RAS and IKK molecules can be activated when the over-
expressed HMGB1 binds to RAGE and TLRs. We verified the following property

Pr>0.9[FtG180(PI3Ka/PI3Ktot > 0.9 & RASp/RAStot > 0.8 & IKKa/IKKtot > 0.6)],
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Table 3: Verification of Property 2
Property:Pr>0.9[Ft(R> 0.65 & Ft(R6 0.20 & Ft(R> 0.20 & Ft(R6 0.20))))]
HMGB1 t(min) # of Samples # of Successes Result Time (s)
102 45 13 1 False 76.77
102 60 22 22 True 111.76
102 75 104 98 True 728.65
105 30 4 0 False 5.76

Table 4: Verification of Property 3 and 4

Property 3 Property 4
t(min) Samples Successes Result Time (s) IKK Samples Successes Result Time (s)
90 9 0 False 21.27 105 22 22 True 547.52
110 38 37 True 362.19 2×104 9 2 False 55.86
120 22 22 True 214.38 102 4 0 False 16.89

which means that 90% of PI3K, 80% of RAS and 60% of IKK will be activated withint minutes, and
they will always stay above these values during the next 3 hours. This property was tested with HMGB1
overexpressed (105) and for various values oft given in Table 4.

Property 4: The overexpression of IKK can promote the translocation of NFκB into the nucleus,
induce the transcription of protein Cyclin D and Myc and leadto the overexpression of Cyclin E. We
verified the property

Pr>0.9[F300G300(CyclinE>= 10,000)].

The results are presented in Table 4.
We also used the Bayesian interval estimation algorithm to perform a more accurate study of several

temporal properties. In Table 5, we report the estimates forthe probability that the HMGB1-NFκB
model satisfies three temporal logic properties. We ran the tests with uniform prior and half-interval size
δ = 0.01 and coverage probabilityc = 0.9. We can see from the computation time of the tables that
statistical model checking is feasible even with large reaction networks, such as the one under study.

6 Discussion

This paper is the first attempt to integrate the NFκB signaling pathway with the p53-MDM2 and Rb-E2F
pathways to study HMGB1 signal transduction at the single cell level. The NFκB pathway is important

Table 5: Bayesian Estimation of Temporal Logic Properties
IKK Property Posterior Mean # of Samples Time (s)
105 [F30(NFκBn/NFκBtot > 0.45)] 0.9646 903 464
105 [F60(NFκBn/NFκBtot > 0.65 &

F60(NFκBn/NFκBtot 6 0.2))] 0.9363 689 1783
102 [F300G300(CyclinE>= 10,000)] 0.0087 113 252.83
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because it regulates the transcription of many pro-apoptotic and anti-apoptotic proteins. Several exper-
iments were simulated using ODEs and Gillespie’s algorithmunder a range of conditions, using the
BioNetGen language and simulator. We used statistical model checking to formally and automatically
validate our model with respect to a selection of temporal properties. Model validation is performed
efficiently and in a scalable way, thereby promising to be feasible even for larger BioNetGen models.

Our stochastic simulations show that HMGB1-activated receptors can generate sustained oscilla-
tions of irregular amplitude for several proteins including NFκB, IKK and p53. These results are qual-
itatively confirmed by experiments on p53 [14] and NFκB [36]. The simulations also demonstrate a
dose-dependent p53, Cyclin E and NFκB response curve to an increase in HMGB1 stimulus, which is
qualitatively consistent with experimental observationsin cancer studies [26, 44]. In particular, over-
expression of HMGB1 can promote the expression of the cell cycle regulatory proteins Cyclin E and
NFκB. It can also inhibit the pro-apoptotic p53 protein, which can lead to increased cancer cell survival
and decreased apoptosis. We also investigated how the mutation or knockout of the IKK, A20 and NFκB
proteins influence the fate of cancer cells.

Moreover, understanding of HMGB1 at the mechanistic level is still not clear, and reaction rates
for some proteins interactions in the four signaling pathways have not been measured by experiments.
We have also made some simplifications and assumption in our model. For example, the NFκB protein
complex is composed of RelA(p65), RelB, cRel and NFκB1(p50), but we neglected the formation of the
NFκB complex in our HMGB1 model in order to make the model relatively simple.

Our current HMGB1-Ras-p53-NFκB-Rb crosstalk model compares qualitatively well with experi-
ments, and can provide valuable information about the behavior of HMGB1 signal transduction in re-
sponse to different stimuli. In the future we plan to improvefurther our model with the help of new
experimental results. Furthermore, the use of model checking techniques will enable us identifying and
validating more realistic models.
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