
  
Short Abstract — We use computational modeling and formal 

analysis techniques to study the temporal behavior of a logical 
model of the naïve T cell differentiation. The model is analyzed 
formally and automatically by performing temporal logic queries 
via statistical model checking.  

I. INTRODUCTION AND MOTIVATION 
The goal of this study is to identify key factors and 

pathways that contribute to the discrimination of the T-cell 
receptor (TCR) signal strength (i.e., antigen 
dose/duration/affinity presented to TCR) by the 
differentiating T cell (Figure 1(a)). Different T cell phenotype 
ratios play an important role in T-cell mediated immunity, in 
both autoimmune diseases and in cancer. The two primary 
phenotypes we consider are: 1) regulatory (Treg) cells that 
express the transcription factor Foxp3 but do not express the 
cytokine IL-2; 2) and helper (Th) cells that do not express 
Foxp3 but do express and secrete IL-2. Control of the Treg 
vs. Th cell phenotype induction is a promising approach to 
either eliminate antigen-specific Treg cells and decrease (or 
even reverse) immune suppression in cancer, or enhance Treg 
induction to prevent autoimmune diseases. Previous studies 
have indicated that the timing of T cell stimulation, both 
antigen dose and the duration of antigen stimulation, strongly 
influence the T cell phenotype choice [1]. 

To study this system, we apply computational modeling 
approaches and formal methods from electronic design 
automation (EDA). The model used in this work (described in 
[2]) couples exogenous signaling inputs to T cell phenotype 
decisions. This model was developed using a discrete, logical 
modeling approach, and simulated using random 
asynchronous approach and BooleanNet tool [3]. Model 
simulations described in [2] allow for recapitulating a number 
of experimental observations and provide new insights into 
the system. However, to test new properties of the model, it is 
usually necessary to write new parts of the simulator code, or 
manually analyze a significant amount of simulation data. 
This approach quickly becomes tedious and error-prone. 

In this work, we apply temporal logic model checking to 
automatically analyze the behavior of the model. Since the 
underlying semantic model of BooleanNet is essentially a 
discrete-time Markov chain, we need to verify probabilistic 
(stochastic) models. The verification problem for stochastic 
systems amounts to compute the probability that a given 
temporal logic formula is satisfied by the system. One 
approach to the verification problem uses precise numerical 
methods to compute exactly the probability that the formula 
is true (e.g. [4]). However, these methods suffer from the 
state explosion problem, and do not scale well to large-scale 
systems. Statistical model checking can be effectively used 
for verifying temporal logic specifications for systems 
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affected by the state explosion problem. The technique relies 
on system simulation, thereby avoiding a full state space 
search. This implies that the answer to the verification 
problem (i.e., the probability that the property holds) is only 
approximate, but its accuracy can be arbitrarily bounded by 
the user. In return, statistical model checking is more scalable 
and hence more useful for large models. 

II. METHODOLOGY 
The steps of our methodology are presented in Figure 1(b) 

and described below. We encode relevant properties of the 
model as temporal logic formulae, which are then verified via 
statistical model checking. We use Bounded Linear Temporal 
Logic (BLTL) as our specification language. BLTL restricts 
the well-known Linear Temporal Logic (LTL) with time 
bounds on the temporal operators. For example, a BLTL 
formula expressing the specification “it is not the case that in 
the Future 10 time steps CD25 is Globally activated (i.e., it 
equals 1) for 17 time steps” is written as 

¬F10 G17 (CD25 = 1) 
where the F10 operator encodes “future 10 time steps”, G17 

expresses “globally for 17 time steps”, and CD25 is a state 
variable of the model. The syntax of BLTL is given by: 

ψ ::= y ~ v | ψ1 ∧  ψ2 | ψ1∨  ψ2 | ¬ψ1 | ψ1 Ut ψ2 
where  ~ ∈{≤, ≥, =}, y ∈ SV (the finite set of state variables), 
v ∈ R, t ∈ R>0, and ¬ ,∨ , ∧  are the usual Boolean connectives. 
Formula of the type y ~ v are also called atomic propositions. 
The formula ψ1Ut ψ2 holds true if and only if, within time t, 
ψ2 will be true and ψ1 will hold until then. Note that the 
operators Ft and Gt referenced above are easily defined in 
terms of the until Ut operator: Ft ψ = true Ut ψ requires ψ to 
hold true within time t (true is the atomic proposition 
identically true); Gt ψ  = ¬Ft ¬ψ requires ψ to hold true up to 
time t. 

We have combined BooleanNet with a parallel statistical 
model checker, so that verification of BLTL properties can be 
performed efficiently and automatically on a multi-core 
system. Statistical model checking treats the verification 
problem for stochastic systems as a statistical inference 
problem, using randomized sampling to generate traces (or 
simulations) from the system model, then using model 
checking methods and statistical analysis on those traces. 
Efficient Bayesian techniques were introduced and 
successfully applied to the verification of rule-based models 
of signaling pathways and other stochastic systems [5][6]. In 
particular, the approach is based on sequential estimation, and 
given a coverage probability and an interval width, it returns 
a Bayesian confidence interval for the probability that the 
BLTL formula is true. 

III. RESULTS 
Experimental observations from [1] that the 

induction/expansion of Foxp3+ Treg cells by low dose 
antigen is inversely correlated with the levels of signaling via 
the mTOR pathway suggest a complex interaction between 
cell surface receptors, signaling molecules and important 
transcription factors. The model in [2] captures critical 
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signaling events, from stimulatory signals at receptors, 
through activation of transcription factors, to production of 
proteins representing different phenotypes. 

Several model simulation results obtained using 
BooleanNet are shown in Figure 1(c). These results present 
the behavior of critical elements in the model averaged across 
1000 simulation trajectories, for two different stimulation 
scenarios. When naïve T cells are stimulated with low antigen 
dose, they can differentiate into Treg cells expressing Foxp3. 
Similarly, model simulations that mimic the low antigen dose 
case result in steady state with Foxp3=1 (Figure 1(c) (top)). 
Model simulation results show that the behavior of IL-2 gene 
expression early after stimulation is similar for both low and 
high antigen dose. This is not so straightforward to measure 
in experiments as IL-2 is measured outside of cells, where it 
is consumed quickly after being expressed and secreted. What 
is not clear from averaged simulation trajectories (Figure 1(c) 
(top)) is whether IL-2 reaches value 1 on all trajectories, but 
at different update rounds, or whether it reaches value 1 on 
only 80% of trajectories. To test this, we consider the 
property F20 (IL2 = 1). Statistical model checking shows that 
the probability that this property holds is close to 1. We have 
also computed the probability that IL-2 remains at level 0 
until its inhibitor, Foxp3, becomes 1. This property: 
 (IL2 = 0) U15 (FOXP3 = 1) 
is returned as a low-probability event. In other words, our 
model predicts initial increase in IL-2, irrespective of antigen 
dose scenario, and the criticality of variations in other 
element values for phenotype decision. 

Another observation from experiments is that removal of 
antigen 18 hours after stimulation results in a mixed 
population of Treg and Th cells. Studies of the model have 
indicated that early events and relative timing of the Foxp3 
activating and inhibiting pathways play crucial role in this 
differentiation. Figure 1(c)(bottom) shows transient behavior 
of CD25 (main element on Foxp3 activating pathway) and 
mTORC1/mTORC2 (inhibitors of Foxp3). With model 
checking, we were able to carry further and more efficient 
studies of early behavior of these elements. In Table I, we 
present a set of properties that we tested using statistical 
model checking and results obtained. We also include elapsed 
time that was necessary for checking those properties.  

This scenario results in a mixed population of cells with 

different phenotype. Model checking results outline that early 
events in CD25, mTORC1 and mTORC2 are good predictors 
of the mixed population, as most of the results show close to 

50% successes. In other words, although the tested properties 
would return more uniform behavior in other scenarios, in the 
case of antigen removal, we see more variability between 
possible trajectories. The next step now is to design further 
queries that could uncover exact relationship between early 
events and specific outcomes. 

IV. CONCLUSION 
Model checking is an efficient approach for studying cell 

signaling network models, as it allows for answering a variety 
of questions about the system. Instead of manually analyzing 
simulation trajectories and large output files, one creates 
properties that can be automatically verified. We uncovered 
several relationships between early behavior of elements in 
our T cell model. With the framework that we created, we 
will continue to study this model, focusing on several other 
key relationships, such as the one between Foxp3 and PTEN. 
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 (a) (b) (c) 
Figure 1. Modeling of immune systems cells: (a) Differentiation of naïve T cells into Teg or Th, induced antigen presented by APC, or cytokines secreted by 
tumor cells; (b) statistical model checking flow; (c) model simulation results for two scenarios. 

Table I. 
Tested properties and model checker runtime on a 48-core system. Coverage 

probability=0.999; half-interval=0.01, except for Property 1 (=0.001) 

 Property Probability estimate 
and sample size 

Elapsed 
time [s] 

1 G7 ~(MTORC1 = 1 & MTORC2 = 1)  estimate = 0.0188048 
samples = 200,160 1,946 

2 F7 (MTORC1 = 1 & MTORC2 = 1)  estimate = 0.980884 
samples = 2,352 23 

3 F10 (MTORC1 = 1 & MTORC2 = 1 & 
CD25 = 0 & (F18 (CD25 = 1))) 

estimate = 0.60104 
samples = 25,968 253 

4 F28 (MTORC1 == 1 & MTORC2 == 1 & 
CD25 == 0 & (F1 (CD25 == 1))) 

estimate = 0.592195 
samples = 26,160 254 

5 F10 (MTORC1 = 1 & MTORC2 = 1 & 
CD25 = 0 & (F1 (G17 (CD25 = 1)))) 

estimate = 0.39669 
samples = 25,920 254 
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