
ProbReach: Verified Probabilistic Delta-Reachability for
Stochastic Hybrid Systems

Fedor Shmarov
School of Computing Science

Newcastle University
Newcastle upon Tyne, UK
f.shmarov@ncl.ac.uk

Paolo Zuliani
School of Computing Science

Newcastle University
Newcastle upon Tyne, UK

paolo.zuliani@ncl.ac.uk

ABSTRACT
We present ProbReach, a tool for verifying probabilistic
reachability for stochastic hybrid systems, i.e., computing
the probability that the system reaches an unsafe region of
the state space. In particular, ProbReach will compute an
arbitrarily small interval which is guaranteed to contain the
required probability. Standard (non-probabilistic) reacha-
bility is undecidable even for linear hybrid systems. In Pro-
bReach we adopt the weaker notion of delta-reachability,
in which the unsafe region is overapproximated by a user-
defined parameter (delta). This choice leads to false alarms,
but also makes the reachability problem decidable for virtu-
ally any hybrid system. In ProbReach we have implemented
a probabilistic version of delta-reachability that is suited for
hybrid systems whose stochastic behaviour is given in terms
of random initial conditions. In this paper we introduce the
capabilities of ProbReach, give an overview of the parallel
implementation, and present results for several benchmarks
involving highly non-linear hybrid systems.

Categories and Subject Descriptors
C.3 [Special-purpose and application-base systems]:
Real-time and embedded systems; D.2.4 [Software Engi-
neering]: Software/Program Verification—Model checking

Keywords
Probabilistic model checking, hybrid systems, stochastic sys-
tems, bounded model checking

1. INTRODUCTION
In modern society, we interact with cyber-physical sys-

tems (e.g., cars and airplanes) on a daily basis. Some of
these systems are safety-critical, with human lives crucially
depending on their reliability and correctness. Thus, verifi-
cation of cyber-physical systems is extremely important.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
HSCC’15, April 14–16, 2015, Seattle, WA, USA
Copyright 2015 ACM 978-1-4503-3433-4/15/04 ...$15.00
http://dx.doi.org/10.1145/2728606.2728625.

Verifying cyber-physical systems is a very difficult task
and can be performed in various ways. We employ hybrid
systems as an expressive framework for modelling and veri-
fication of cyber-physical systems. One of the most impor-
tant properties investigated by researchers in hybrid systems
is reachability. The main reason being that many verifica-
tion problems can be presented as reachability problems.
In other words, we wish to verify whether a hybrid system
reaches an unsafe region — a subset of the state space of the
system representing an unwanted behaviour. The reachabil-
ity problem is undecidable in general (even for linear hy-
brid systems [1]). We avoid undecidability issues by solving
instead the weaker δ-reachability problem [?], which asks
whether a hybrid system reaches an overapproximation of
the unsafe region.

In this paper we focus on hybrid systems featuring stochas-
tic behaviour. Such systems frequently arise when modelling
real-world cyber-physical systems. For example, random be-
haviour can happen due to soft errors in some components of
the system. Without a doubt this can cause the whole sys-
tem behaving in a faulty way. By investigating a problem-
atic component, its characteristics (e.g., error distribution)
can be obtained. In this case it might be necessary not only
to predict an undesired behaviour but also show that the
probability of occurrence of a bad event is below (or above)
some required threshold. This problem is called probabilis-
tic reachability, and it can be expressed for stochastic hybrid
systems. In particular, we consider hybrid systems with ran-
dom continuous/discrete initial parameters. Such parame-
ters are assigned in the initial mode and remain unchanged
throughout the system’s evolution. Having a probability
measure on random parameters we can assess quantitative
properties of hybrid systems such as the probability of reach-
ing an unsafe set of states.

We implemented the tool ProbReach which performs ver-
ified computation of the probability that a hybrid system
reaches an unsafe region within a finite number of discrete
steps. In particular, our tool implements a general proce-
dure for computing an interval of arbitrarily small length
which is guaranteed to contain the exact value of the prob-
ability. ProbReach works for general hybrid systems whose
continuous dynamics is given, e.g., as a solution of ordinary
differential equations (ODEs). Our tool uses δ-complete de-
cision procedures [6] and implements a verified integration
procedure [10] used for integrating probability measures of
random variables.

Related work.
To the best of our knowledge, SiSAT [3] is the only tool

that can perform verified reachability analysis in hybrid sys-
tems with random parameters. However, it supports only
discrete random variables, while ProbReach accepts contin-
uous and discrete random initial parameters. A recent work
[2] proposes a statistical model checking technique for verify-
ing hybrid systems with continuous nondeterminism, thereby
significantly expanding the class of systems analysable. How-
ever, the approach is based on statistical planning algo-
rithms from AI, and therefore it cannot offer the absolute
guarantees provided by ProbReach. A similar approach has
been taken by the SReach tool [13], which combines statisti-
cal techniques with δ-complete procedures. The advantages
of SReach are its ability to handle large numbers of ini-
tial random variables and probabilistic transitions. Again,
SReach can only offer statistical guarantees, while ProbReach
focuses on absolutely correct results. Also, in Section 4 we
essentially show that ProbReach can be as fast as statistical
(Monte Carlo) methods.

In this paper we explain the theoretical background of
ProbReach, its implementation details and consider several
case studies such as an insulin glucose regulatory system
[11], a controlled bouncing ball [9], and a thermostat model.

2. BACKGROUND
We give here a brief overview of the theory underlying

ProbReach. For simplicity we focus on one continuous ran-
dom parameter only — more details can be found in [12].
ProbReach addresses the following problem:

what is the probability that a hybrid system with
random initial parameters reaches the unsafe re-
gion U in k steps?

As this problem is in general undecidable, we adopt the
weaker notion of δ-reachability. In our setting it means
that ProbReach will actually compute an interval of a user-
specified length ε > 0 that is guaranteed to contain the
reachability probability. The main idea of the approach im-
plemented in the tool is to compute the probability by inte-
grating an indicator function over the probability measure
of the random variable as:∫

Ω

IU (r)dP (r)

where P (r) is a probability measure of the random variable,
Ω is the domain of the random variable, and IU is the indi-
cator function defined as:

IU (r) =

{
1, system with parameter r reaches U in k-steps

0, otherwise.

The procedure for solving probabilistic reachability com-
bines a validated integration procedure and a decision proce-
dure. The first one integrates a probability measure (prob-
ability density function) of a random variable and obtains a
partition of the random variable domain which guarantees
that the probability interval is not larger than the desired
length ε. The second procedure evaluates the indicator func-
tion on each of the intervals from the obtained partition and
performs a partial analysis of the interval if necessary.

Validated Integration Procedure.
The problem here is to compute the integral function de-

fined by

I([a, b]) =

∫ b

a

f(x)dx

up to an error ε. In the implementation of our validated inte-
gration procedure we employ the (1/3) Simpson rule which,
by applying interval arithmetics [4], can be formulated as:

I([a, b]) ∈ [I]([a, b]) =
b− a

6
([f](a) + 4[f](

a+ b

2
))+

[f](b))− (b− a)5

2880
[f](4)([a, b])

where [I] and [f] are the interval extensions of functions I
and f . Then by the definition of integral:

I([a, b]) ∈ Σni=1[I]([r]i)

where n is a number of disjoint intervals [r]i that partition
[a, b]. Interval extensions can be readily computed using
interval arithmetics libraries such as FILIB++ [8].

Decision Procedure.
Our decision procedure encodes bounded δ-reachability in

hybrid systems as a first-order logic formula. This formula
is then passed to a δ-complete decision procedure [5] which
uses the notion of δ-weakening of a logical formula. Basi-
cally, the main idea is to perform evaluation of a weaker
(decidable) formula and make a conclusion about the initial
formula on this basis. Given an arbitrary first order for-
mula the δ-complete procedure returns unsat if the formula
is false and δ-sat if its weakening is true. Hence, unlike
unsat, δ-sat is a weak answer as it does not imply the satis-
fiability of the formula. We use this fact to define a decision
procedure for verifying the indicator function above. The
decision procedure comprises two formulas φ and φC which
are defined as following:

• φ([r]i) is true if the interval [r]i contains a value r
such that IU (r) = 1 and false if IU (r) = 0 for all the
points of the interval

• φC([r]i) is true if there is a value in [r]i such that
IU (r) = 0 and false if IU (r) = 1 everywhere on the
interval.

Verifying now both formulas using dReach1, we obtain
four outcomes which can be interpreted as follows:

• φ([r]i) is unsat. Hence, IU (r) = 0 in all points on [r]i
for sure.

• φ([r]i) is δ-sat. Then there is a value in the interval
[r]i such that the system reaches the unsafe region U
or its weaker definition (δ-weakening).

• φC([r]i) is unsat. Thus, IU (r) = 1 point-wise on [r]i
for sure.

• φC([r]i) is δ-sat. Then there is a value in the inter-
val [r]i such that the system stays outside the unsafe
region or its weakening within the k-th step.

1http://dreal.cs.cmu.edu/dreach.html

As it was stated above, only unsat returned for either of the
formulas guarantees the correctness of the interval valida-
tion. Therefore, if both formulas evaluates as δ-sat then ei-
ther a false alarm is obtained (when a formula which should
be unsatisfiable is verified as δ-sat because of a relatively
large value of δ used for verification) or the analysed inter-
val is mixed (i.e., it contains a value r for which IU (r) = 0
and also a value s for which IU (s) = 1) which means that
the interval should be partitioned and verified again. The
pseudo-code of the algorithm implemented in ProbReach is
presented in Algorithm 1.

3. SYSTEM OVERVIEW
This section aims giving an overview of the main compo-

nents of ProbReach, their interaction, and implementation
details. The architecture of the tool is shown in Figure 1.

Algorithm 1: ProbReach (one cont. random parameter)

Input : probability density f , t ∈ (0, 1) ∩Q,
ε ∈ (0, 1] ∩Q, formula φ, φC

Output: interval [I]:
∫
B
f ∈ [I] and width([I]) ≤ ε

1 εinf = tε
2 εprob = (1− t)ε
3 [a, b] = bounds(f, εinf) {obtain bounds}

4 B.push(integral(f, [a, b], εprob)) {get partition}

5 [Plower] = [0.0, 0.0] {interval for lower approx}

6 [Pupper] = [1.0, 1.0] {interval for upper approx}

7 while [Pupper]− [Plower] > εprob do

8 D = ∅ {extra interval divisions}

9 while size(B) > 0 do
10 {[x], [S]([x])} = B.pop() {get an interval}

11 if φ([x]) == δ-sat then {call dReach}

12 if φC([x]) == δ-sat then {call dReach}

13 D.push({[x,mid([x])], [S([x,mid([x])])]})
D.push({[mid([x]), x], [S([mid([x]), x)]})

14 else [Plower] = [Plower] + [S]([x]) {update

int}

15 else [Pupper] = [Pupper]− [S]([x]) {update int}

16 B = D

17 [Pupper] = [Pupper] + 1−
∫ b
a
f(x) dx {add leftovers}

18 return [[Plower], [Pupper]]

Output

num_threads - 1

... dReach Additional Partition

Probability Calculator

Partition Generator

dReach

Formula Generator

Validated Integration Procedure

RV extractorInput

Figure 1: Architecture of ProbReach

Input.
In the first step ProbReach validates the input and ex-

tracts all the necessary data. The application requires a sin-
gle input file (containing φ and φC) in PDRH format. This file
is used further as templates by the Formula Generator.
An example of the PDRH model of a two-mode thermostat
is given below. Note in particular the declaration of a ran-
dom parameter x distributed as a normal with mean 30 and
standard deviation 1.

1 #define K 1.0

2 [0, 5] time;

3 [0, 1000] tau;

4 //random parameter declaration

5 N(30, 1) x;

6 //cooling mode

7 { mode 1;

8 invt:

9 (x >= 18);

10 flow:

11 d/dt[x] = - x * K;

12 d/dt[tau] = 10.0;

13 jump:

14 (x <= 18) ==> @2 (and (x’ = x) (tau’ = tau));

15 }

16 //heating mode

17 { mode 2;

18 invt:

19 (x <= 22);

20 flow:

21 d/dt[x] = - K * (x - 30);

22 d/dt[tau] = 10.0;

23 jump:

24 (x >= 22) ==> @1 (and (x’ = x) (tau’ = tau));

25 }

26 //initial state

27 init:

28 @1(and (tau = 0));

29 //unsafe region

30 goal:

31 @2(and (x >= 19.9) (x <= 20.1) (tau = 6));

32 //unsafe region complement

33 goal_c:

34 @2(or (x < 19.9) (x > 20.1) (tau = 6));

The details of how to use ProbReach are given in Applica-
tion Usage section.

The aim of the RV extractor is to read all the ran-
dom variables from the model file containing φ, ignoring
any other parameter declarations. The tool recognises most
of the frequently used distributions (e.g., uniform, normal,
exponential), and once the random variables are successfully
extracted, their probability density function is automatically
generated. Hence, ProbReach is not restricted to some set of
predefined random variables and can be extended to allow
user-defined distributions (by simply providing a probability
density function).

Verified integration and Partition generation.
Many useful random variables are defined over unbounded

intervals (e.g., normal distribution). However, it was shown
in the previous section how to perform verified integration
and reachability analysis over bounded intervals only. We
cope with unbounded intervals by making a trade-off. Given

a desired length ε of the probability interval we choose a
value t ∈ (0, 1) (can be also defined by the user) and obtain
an interval [a, b] such that:∫ b

a

f(r) dr > (1− t)ε

Finding a and b can be actually encoded as a logical formula
which can be solved by dReal [6].

The intuition behind this is that we assume that the indi-
cator function equals to 1 outside the interval [a, b]. In case
if it is not true (the indicator function is 0 in some points
outside the considered bounded domain) the integral of the
indicator function over the unbounded intervals will be still
bounded by tε (as the integral of a probability density func-
tion on interval (−∞,∞) is 1).

Then, the Validated Integration Procedure computes
a definite integral of the probability density function on the
obtained finite interval. This is achieved through an iterative
partitioning (by Partition Generator) of the integration
domain until on each interval [r]i the value of the integral

is enclosed by an interval of the length (1 − t)ε width([r]i)
width([a,b])

.

For such a partition it is guaranteed that the value of the
integral over the bounded domain belongs to an interval of
length (1− t)ε.

Partition verification.
Once the correct partition is obtained, each interval [r]i

is used to generate two model files (encoding φ([r]i) and
φC([r]i)) in DRH format which are then verified by dReach.
This routine was parallelised using the OpenMP shared mem-
ory library (see the code below).

1 //setting a number of threads

2 int num_threads = omp_get_max_threads();

3 if (num_threads > 1)

4 {

5 omp_set_num_threads(num_threads - 1);

6 }

7 //Algorithm 1 line 6 loop

8 {

9 #pragma_omp_for

10 {

11 //Algorithm 1 line 8

12 }

13 //Algorithm 1 line 15

14 while (B.size() < num_threads - 1)

15 {

16 //partition B to reduce CPU idle

17 }

18 }

Initially, the application gets the maximum number of avail-
able cores (num_threads) and uses num_threads - 1 (if more
then one is available) of them to perform the computa-
tion leaving one core to let the computer executing back-
ground tasks. Then the partition is distributed between
num_threads - 1 threads and each of them evaluates its
interval with dReach.

Now, if for the analysed interval either of the formulas is
unsat then Probability Calculator modifies the proba-
bility bounds:

• if φ([r]i) is unsat then [r]i is used for calculating Pupper

(probability upper bound). The integral of the proba-
bility density over the interval [r]i is subtracted from
Pupper; initially we of course have Pupper = 1.

• if φC([r]i) is unsat then [r]i is used for calculating
Plower (probability lower bound). The integral of the
probability density over the interval [r]i is added to
Punder, starting initially with Punder = 0.

However, both formulas may be evaluated as δ-sat for
a given interval from the partition. This suggests that ei-
ther a false alarm is obtained or the interval is mixed (it
contains values satisfying both formulas). Then, such an
interval is subject to Additional Partition, which should
further undergo the described cycle once again. In the par-
allel implementation, all mixed intervals are partitioned un-
til their number reaches num_threads - 1, to reduce CPU
idle time. Extra partitioning can be performed arbitrarily
many times as it does not alter the correctness of the result.
The described routine stops when the length of the inter-
val [Plower, Pupper] is shorter than (1 − t)ε. Hence, taking
into account the assumption about the value of the indica-
tor function outside the bounded domain the probability is
guaranteed to be contained inside the interval of the length
tε+ (1− t)ε = ε.

Finally, we note that at any point in time during the com-
putation, the exact value of the probability belongs to the
interval [Plower, Pupper], which is written in output when
the interval bounds change. This might be advantageous for
time-critical verification scenarios, as the user can specify a
computation timeout. Thus, despite the fact that the de-
sired precision might not be achievable within the specified
timeframe, the obtained result is still complete in the sense
that the desired probability is guaranteed to be inside the
computed interval.

Implementation details.
ProbReach has been implemented in C++, using the CAPD

library2 for interval operations. Input analysis is performed
using the C++11 regular expression engine. Parallelisation
of the code was achieved using OpenMP, and both versions
of the tool (parallel and sequential) were built and tested.
The parallel implementation running on 24 cores demon-
strated a 8-10 times speed up in comparison to the sequen-
tial one.

Application usage.
Once the tool has been compiled, the executable is put

into <ProbReach-directory>/bin. Then the tool can be
called from the command line as ./ProbReach <options>

<model-file.pdrh> --dreach <dReach-options> --dreal

<dReal-options>. The ProbReach options are specified be-
low:

2http://capd.ii.uj.edu.pl

options:

-e <double> - length of probability interval

or max length of box edge (default 0.001)

-l <string> - path to dReach binary (default dReach)

-t <int> - number of CPU cores (default 1)

-h/--help - help message

--version - version of the tool

--verbose - output computation details

--dreach - delimits dReach options

(e.g., reachability depth)

--dreal - delimits dReal options

(e.g., precision, ode step)

Tool availability.
The source code of ProbReach and installation instructions

are available on https://github.com/dreal/probreach. We
also implemented a web application to display ProbReach’s
results. ProbReach outputs intermediate probability inter-
vals to a JSON file which can be visualised by
https://homepages.ncl.ac.uk/f.shmarov/probreach/.

4. EXPERIMENTS
The description of all the models and verification scenar-

ios are given in the Appendix. All the experiments were
carried out on a Intel Xeon E5-2690 2.90GHz multi-core sys-
tem running Linux Ubuntu 14.04LTS. The parallel version of
ProbReach ran on 24 cores. The results were also validated
using a Monte Carlo method in MATLAB. We calculated
confidence intervals using the sample size returned by the

Chernoff-Hoeffding [7] bound N =
log 1

1−c

2ζ2
, where ζ is the

interval half-width and c is the coverage probability. The
results are presented in Table 1.
Results analysis.

In most of the experiments ProbReach demonstrated a
better performance than the Monte Carlo method. How-
ever, for the Insulin-Glucose (IG) model the Monte Carlo
method was faster for the two scenarios considered. Never-
theless, reducing the length of the confidence interval causes
a quadratic growth in the sample size. For example, obtain-
ing a confidence interval of size 10−4 with coverage 0.999 re-
quires 1.3815510558× 109 samples, with an estimated CPU
time of 2.3 × 109 seconds. ProbReach computes a guaran-
teed enclosure of size smaller than 10−4 in about 3.5 × 106

seconds. Hence, for stronger precisions (i.e., smaller ε) Pro-
bReach performs better than Monte Carlo method.

Considering the results for the thermostat model (see rows
T4(1.7) in Table 1), the Monte Carlo method returned a
probability estimate (number of successes divided by num-
ber of samples) of 9.438088 × 10−8 with a relatively large
confidence interval (10−5) using 33,015 seconds of CPU time.
ProbReach can compute an interval of size about 10−9 in just
268 seconds. Computing a confidence interval of length 10−9

with coverage 0.99999 requires 2.3025850929×1019 samples,
which suggests that ProbReach can be very efficient for rare
event verification.

5. CONCLUSIONS AND FUTURE WORK
We have presented the ProbReach tool which computes

an arbitrarily small interval containing the probability that
a hybrid system reaches an unsafe region of its state space.
ProbReach is not limited to a set of predefined random vari-

ables, as it works with probability density functions. Thus,
it can be extended to support user-defined distributions.
We have successfully benchmarked ProbReach and in many
cases it demonstrated a better performance in comparison
to Monte Carlo simulations while providing stronger guar-
antees of result correctness. Finally, it was shown that Pro-
bReach is very efficient for rare event verification.

In the future, we plan to implementing a more efficient
parallelisation scheme. This will be performed modifying
the partition verification approach. Instead of adding mixed
intervals to a separate queue and verifying them after the
main partition, newly partitioned intervals will be pushed to
the end of the main queue. Then, a parallelisation manager
monitoring the available cores will be dynamically distribut-
ing the load equally between the threads, thus reducing CPU
idle. According to our estimations, this modification will
significantly increase the performance of the tool.

Another extension is to allow probabilistic jumps in the
model. We plan to allow jumps whose probabilities may de-
pend on the (continuous) variables and parameters. Finally,
we plan to support both nondeterministic and random con-
tinuous parameters. For such systems, probabilistic reach-
ability becomes in general an optimisation problem, as the
nondeterministic parameters may generate ranges of prob-
abilities. These two additions will enlarge very much the
class of models analyzable by ProbReach.

6. ACKNOWLEDGMENTS
This work has been supported by award N00014-13-1-0090

of the US Office of Naval Research.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H.

Ho. Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems. In
Hybrid Systems, volume 736 of LNCS, pages 209–229,
1992.

[2] C. Ellen, S. Gerwinn, and M. Fränzle. Statistical
model checking for stochastic hybrid systems involving
nondeterminism over continuous domains. STTT,
2014. To appear.

[3] M. Fränzle, T. Teige, and A. Eggers. Engineering
constraint solvers for automatic analysis of
probabilistic hybrid automata. J. Log. Algebr.
Program., 79(7):436–466, 2010.

[4] S. Galdino. Interval integration revisited. Open
Journal of Applied Sciences, 2(4B):108–111, 2012.

[5] S. Gao, J. Avigad, and E. M. Clarke. Delta-complete
decision procedures for satisfiability over the reals. In
IJCAR, pages 286–300, 2012.

[6] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT
solver for nonlinear theories over the reals. In CADE,
pages 208–214, 2013.

[7] W. Hoeffding. Probability inequalities for sums of
bounded random variables. J. Amer. Statist. Assoc.,
58(301):13–30, 1963.

[8] M. Lerch, G. Tischler, J. W. V. Gudenberg, W. e.
Hofschuster, and W. Krämer. FILIB++, a fast
interval library supporting containment computations.
ACM Trans. Math. Softw., 32(2):299–324, 2006.

[9] P. J. Mosterman, J. Zander, G. Hamon, and
B. Denckla. Towards computational hybrid system

Tool Model k ε length Probability interval CPUseq CPUpar

Prob
Reach

BB

0 10−9 5.0e-10 [8.21757e-05, 8.21762e-05] 64 7
1 10−9 1.0e-09 [0.1379483631, 0.1379483641] 192 29
2 10−9 9.9e-10 [0.50868960502, 0.50868960601] 927 164
3 10−9 8.0e-10 [0.7387674005, 0.7387674013] 3806 563

ζ c P Confidence interval CPUseq Sample size

Monte
Carlo

BB

0 5 · 10−6 0.99999 8.220032e-05 [7.720032e-05, 8.720032e-05] 16,455 230,258,509,300
1 5 · 10−6 0.99999 0.1379449 [0.1379399, 0.1379499] 19,646 230,258,509,300
2 5 · 10−6 0.99999 0.5086939 [0.5086889, 0.5086989] 21,197 230,258,509,300
3 5 · 10−6 0.99999 0.7387684 [0.7387634, 0.7387734] 20,975 230,258,509,300

ε length Probability interval CPUseq CPUpar

Prob
Reach

T2(0.6) 1 10−9 9.46e-10 [0.006678444555, 0.0066784456] 71 7
T2(1.8) 5 10−9 1.0e-9 [0.0026170599, 0.0026170609] 213 23
T2(2.4) 7 10−9 1.0e-9 [0.0015794358, 0.0015794368] 364 49

ζ c P Confidence interval CPUseq Sample size

Monte
Carlo

T2(0.6) 1 5 · 10−6 0.99999 0.006679496 [0.006674496, 0.006684496] 31,822 230,258,509,300
T2(1.8) 5 5 · 10−6 0.99999 0.002616634 [0.002611634, 0.002621634] 33,287 230,258,509,300
T2(2.4) 7 5 · 10−6 0.99999 0.001579243 [0.001574243, 0.001584243] 33,772 230,258,509,300

ε length Probability interval CPUseq CPUpar

Prob
Reach

T4(0.6) 2 10−9 8.55e-11 [0.0, 8.55e-11] 52 4
T4(1.7) 6 10−9 7.962e-10 [9.43986e-08, 9.51948e-08] 268 28
T4(1.8) 6 10−9 9.0e-10 [0.0039559433, 0.0039559442] 578 75

ζ c P Confidence interval CPUseq Sample size

Monte
Carlo

T4(0.6) 2 5 · 10−6 0.99999 0 [0, 5e-06] 32,883 230,258,509,300
T4(1.7) 6 5 · 10−6 0.99999 9.438088e-08 [0, 5.094381e-06] 33,015 230,258,509,300
T4(1.8) 6 5 · 10−6 0.99999 0.003955074 [0.003950074, 0.003960074] 33,354 230,258,509,300

ε length Probability interval CPUseq CPUpar
Prob
Reach

CBB
2 10−2 8.0e-3 [0.199, 0.207] 70 15
2 10−9 3.0e-10 [0.2049030217, 0.204903022] 8,332 2,581

ζ c P Confidence interval CPUseq Sample size
Monte
Carlo

CBB 2 5 · 10−3 0.99 0.2045948 [0.1995948, 0.2095948] 50,528 92,104

ε length Probability interval CPUseq CPUpar

Prob
Reach

IG
1 10−2 5.328e-3 [0.994589, 0.999917] 2,805,634 165,404
1 10−3 8.1e-4 [0.999107, 0.999917] 3,326,581 443,910
1 10−4 5.5e-5 [0.999657, 0.999712] 3,498,765 490,257

ζ c P Confidence interval CPUseq Sample size

Monte
Carlo

IG
1 5 · 10−3 0.99 0.997266555 [0.9945331, 1] 58,069 92,104
1 2.5 · 10−3 0.99 0.99853 [0.99706, 1] 219,623 368,416

Table 1: Computing probabilistic reachability with ProbReach and MATLAB. k = number of discrete tran-
sitions; ε = desired size of probability interval; length = length of probability interval returned by ProbReach;
ζ, c = half-interval width and coverage probability for Chernoff bound; Sample size = number of simulations
(Chernoff bound); P = probability estimate (successes/Sample size); CPUseq, CPUpar = CPU time (sec) of
sequential and parallel version; BB = bouncing ball model; CBB = controlled bouncing ball model; T2(0.6),
T2(1.8), T2(2.4) = thermostat model with 2 modes at t = 0.6, 1.8, 2.4 respectively; T4(0.6), T4(1.7), T4(1.8)
= thermostat model with 4 modes at t = 0.6, 1.7, 1.8 respectively.

semantics for time-based block diagrams. In 3rd IFAC
Conference on Analysis and Design of Hybrid Systems
(ADHS’09), pages 376–385, 2009.

[10] K. Petras. Principles of verified numerical integration.
Journal of Computational and Applied Mathematics,
199(2):317 – 328, 2007.

[11] S. Sankaranarayanan and G. Fainekos. Simulating
insulin infusion pump risks by in-silico modeling of the
insulin-glucose regulatory system. In CMSB, volume
7605 of LNCS, pages 322–341, 2012.

[12] F. Shmarov and P. Zuliani. Probabilistic bounded

reachability for hybrid systems with continuous
nondeterministic and probabilistic parameters. CoRR,
abs/1406.1920, 2014.

[13] Q. Wang, P. Zuliani, S. Kong, S. Gao, and E. M.
Clarke. SReach: A bounded model checker for
stochastic hybrid systems. CoRR, abs/1404.7206,
2014.

