
SReach: Combining Statistical Tests and
Bounded Model Checking for Nonlinear Hybrid

Systems with Parametric Uncertainty

Qinsi Wang1, Paolo Zuliani2, Soonho Kong1, Sicun Gao1, and Edmund Clarke1

1 Computer Science Department, Carnegie Mellon University, USA
2 School of Computing Science, Newcastle University, UK

Abstract. We present a novel approach for solving the probabilistic
bounded reachability problem of hybrid systems with parameter un-
certainty. Standard approaches to this problem require numerical so-
lutions for large optimization problems, and become unfeasible for sys-
tems involving nonlinear dynamics over the reals. Our approach com-
bines randomized sampling of probabilistic system parameters, SMT-
based bounded reachability analysis, and statistical tests. We utilize
δ−complete decision procedures to solve reachability analysis in a sound
way, i.e., we always decide correctly if, for a given combination of pa-
rameters, the system actually reaches the unsafe region. Compared to
standard simulation-based analysis methods, our approach supports non-
deterministic branching, increases the coverage of simulation, and avoids
the zero-crossing problem. We demonstrate that our method is feasi-
ble for general hybrid systems with parametric uncertainty by applying
the implemented tool SReach to various nonlinear hybrid systems with
parametric uncertainty.

1 Introduction

Hybrid systems, as models exhibiting both continuous and discrete dynamic
behavior, have become a widely used modeling formalism for real-world safety-
critical systems, including for example cyber-physical systems, chemical-physical
process control, and biomedical systems. The core of hybrid system analysis
studies is to construct accurate computational models for real-world systems,
and to verify that they meet their design requirements. Simulation-based testing
is the most used approach regardless of its incompleteness. Reachability analysis
computes instead set over-approximations that cover all system behaviors, which
lead to a better input coverage but are naturally harder to scale. It is important
to note that reachability analysis can handle models with nondeterminism, and
in many cases aim for an infinite time horizon.

We consider the probabilistic bounded reachability problem, which is to decide
whether a hybrid system with probabilistic system parameters reaches an unsafe
region of the state space within a finite number of steps with a probability greater
than a given threshold. Although uncertainty raises naturally and the cause for
the parametric uncertainty is multifaceted, two factors are critical when building
hybrid models for real-world systems. First, probabilistic parameters are needed
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when the physics controlling the system is known, but some parameters are
either not known precisely, or are expected to vary from individual to individual,
or may change by the end of the system operational lifetime. Second, system
uncertainty may occur when the model is constructed or learned directly from
experimental data. Due to imprecise experimental measurements, the values of
system parameters may have ranges of variation with some associated likelihood
of occurrence. In both cases we assume that, for probabilistic system parameters,
their probability distributions are known, and it is desired to design models which
achieve specified performance for these variations.

We describe our tool SReach that integrates the existing δ-complete bounded
reachability analysis technique [7] with statistical testing, in order to support
bounded probabilistic reachability analysis for hybrid systems with parametric
uncertainty. We show experiment results of SReach for the probabilistic reach-
ability analysis of many realistic hybrid systems that are highly nonlinear and
nondeterministic, including a prostate cancer treatment model and a cardiac
atrial fibrillation model.

Related Work. To verify the correctness of stochastic hybrid models, there exist
several techniques and tools, such as simulation-based verification [1, 19], logic-
based verification [14], constraint solving [6], and the probabilistic model checker
PRISM [15]. However, it is still difficult to analyze formally stochastic hybrid
systems with nonlinear dynamics and complex discrete controls [2,10]. Theoret-
ically, it is well known that the safety verification problem for hybrid systems
with simple dynamics is highly undecidable. Consequently, a unified framework
for solving the reachability problem seems impossible, especially for nonlinear
hybrid systems. In details, a major difficulty stems from the need of solving logic
formulae with nonlinear functions over the reals. Recently, [8, 9] have defined a
sound relaxation of this problem and associated decision procedures that always
decide correctly if, for a given combination of parameters, the system actually
reaches the unsafe region (in the opposite case false positives may be generated,
but this can be controlled by a precision parameter δ > 0). The δ-decision prob-
lem is decidable for bounded first-order formulae over the reals with arbitrary
Type 2 computable functions, which include almost all functions used in realistic
hybrid systems.

2 Probabilistic bounded reachability

Hybrid automata combine finite automata and dynamical systems [10]. We can
extend hybrid automata to allow probabilistic parameters in the following way.
Definition 1. (Hybrid Automata with Parametric Uncertainty) A hybrid au-
tomaton with probabilistic parameters is a tuple Hp = 〈Q,X,RX, jump, inv, init〉
with the following components. X = {x1, ..., xn} is a finite set of real variables
and Q = {q1, ..., qm} a finite set of discrete modes. RX = {u1, · · · , uk} is a finite
set of random variables, where the distribution of ui is denoted by Pi. The other
components are jumps, invariants, and initial condition predicates over X∪RX,
as standardly defined for hybrid automata.
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Definition 2. (Probabilistic Bounded Reachability) Let ΩRX to be the sample
space of the probabilistic parameters RX, and S : RX → ΩRX to be a sam-
pler.The probabilistic bounded reachability for Hp estimates the maximum prob-
ability, over ΩRX , of the bounded reachability for Hp[si/RX], where si ∈ S(RX).
To solve probabilistic bounded reachability, we sample parameters in RX ac-
cording to their distributions and obtain a hybrid model Mi with no probabilis-
tic parameter. SReach then calls dReach [7] with the desired precision δ and
unfolding steps k. dReach returns either unsat or δ-sat for Mi, and this in-
formation is then used by statistical tests to decide whether stopping or repeat
the procedure. The full procedure is illustrated in Algorithm 1. SReach can
answer two types of questions: (1) Does MP satisfy φ with probability greater
than a certain threshold? and (2) What is the probability that MP satisfies φ?
These two types of questions can be answered by hypothesis testing and sta-
tistical estimation methods, respectively. Both methods produce answers up to
some correctness precision that can be set arbitrarily by the user. We have im-
plemented in SReach a number of hypothesis testing and statistical estimation
techniques including: Lai’s test [13], Bayes factor test [12], Bayes factor test with
indifference region [18], Sequential probability ratio test (SPRT) [17], Chernoff-
Hoeffding bound [11], and Bayesian Interval Estimation with Beta prior [19].
(See Appendix A for more details.)

Algorithm 1 SReach
1: function SReach(MP , ST , δ, k)
2: Succ← 0 . number of δ-sat samples
3: N ← 0 . total number of samples
4: RV ← ExtractRV(MP ) . get the RVs from the probabilistic model
5: repeat
6: Si ← Sim(RV ) . sample the parameters
7: Mi ← Gen(MP,Si) . generate a dReach model
8: Res← dReach(Mi, δ, k) . call dReach to solve k-step δ-reachability
9: if Res = δ-sat then

10: Succ← Succ+ 1
11: end if
12: N ← N + 1
13: until ST.done(Succ,N) . perform statistical test
14: return ST.output
15: end function

3 Experiments

Our method is implemented in the open-source tool SReach (https://github.
com/dreal/SReach). See Appendix B for its usage. All benchmarks and data
shown below are on the tool website. All experiments were conducted on a ma-
chine with 2.9GHz Intel Core i7 processor and 8GB RAM, running OS X 10.9.2.
In our experiments we used 0.001 as the precision for the δ-decision problem; and
Bayesian sequential estimation with 0.01 half-interval width, coverage probabil-
ity 0.99, and uniform prior (α = β = 1). The detailed description of the following
models in Appendix C demonstrates their highly nonlinear characteristics.
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Prostate cancer treatment. We modified the model of the intermittent an-
drogen suppression (IAS) therapy in [16] by adding parametric uncertainty. The
IAS therapy switches between treatment-on, and treatment-off with respect to
the serum level thresholds of prostate-specific antigen (PSA) - r0 and r1. As sug-
gested by the clinical trials [3], an effective IAS therapy highly depends on the
individual patient. Thus, we modified the model by taking the parametric varia-
tion caused by the personalized differences into account. In details, according to
the clinic data from hundreds of patients [4], we replaced 6 system parameters
with random variables with appropriate (continuous) distributions, including αx
(proliferation rate of AD cells), αy (proliferation rate of AI cells), βx (apoptosis
rate of AD cells), βy (apoptosis rate of AI cells), m1 (mutation rate from AD to
AI cells), and z0 (normal androgen level).

Model #RVs r0 r1 Est P #S S #T S Avg T(s) Tot T(s)

PCT1 6 5.0 10.0 0.04 0 227 0.145 32.915

PCT2 6 7.0 11.0 0.591 2144 3628 432.491 1569077.348

PCT3 6 10.0 15.0 0.996 227 227 692.861 157279.446
Table 1: #RVs = number of random variables in the model, #S S = number of δ-sat samples, #T S
= total number of samples, r0 = lower threshold of the serum PSA level, r1 = upper threshold,
Est P = estimated probability of the property, Avg T(s) = average CPU time of each sample in
seconds, and Tot T(s) = total CPU time for all samples in seconds.

To describe the variations due to individual difference, we assigned αx to
be U(0.0193, 0.0214), αy to be U(0.0230, 0.0254), βx to be U(0.0072, 0.0079),
βy to be U(0.0160, 0.0176), m1 to be U(0.0000475, 0.0000525), and z0 to be
N(30.0, 0.001). We used SReach to estimate the probabilities of the model pre-
venting the relapse of the prostate cancer with three distinct pairs of treatment
thresholds (i.e., combinations of r0 and r1). In the experiments, we chose 2 as the
unfolding steps. For each sample generated, SReach dealt with 41 variables, and
10 ODEs. As shown in Table 1, the model with thresholds r0 = 10, and r1 = 15
has the probability approaching to 1, indicating that these thresholds may be
considered for the general treatment.
Atrial Fibrillation. The minimum resistor model (MRM) reproduces experi-
mentally measured characteristics of human ventricular cell dynamics [5]. The
MRM reduces the complexity of existing models by representing channel gates
of different ions with one fast channel, and two slow gates. However, due to this
reduction, for most model parameters, it becomes impossible to obtain their val-
ues through measurements. With this application, we will show that SReach
can also be adopted to identify appropriate ranges and distributions for model
parameters, i.e., parameter estimation.

To illustrate the way that SReach is used to conduct parameter estimation,
we chose two system parameters - EPI TO1, and EPI TO2, and varied their
distributions to see with which distributions for these two system parameters,
the model can present the desired pattern. The model has 4 modes. In the exper-
iments, we chose 3 as the unfolding steps. For each sample generated, SReach
dealt with 62 variables, and 24 ODEs. As in the Table 2, when EPI TO1 is
either close to 400, or between 0.0061 and 0.007, and EPI TO2 is close to 6, the
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model can satisfy the given bounded reachability property with a probability
very close to 1.

Model #RVs EPI TO1 EPI TO2 #S S #T S Est P A T(s) T T(s)

Cd to1 s 1 U(6.1e-3, 7e-3) 6 227 227 0.996 0.362 82.174

Cd to1 uns 1 U(5.5e-3, 5.9e-3) 6 0 227 0.004 0.124 28.148

Cd to2 s 1 400 U(0.131, 6) 227 227 0.996 0.361 81.947

Cd to2 uns 1 400 U(0.1, 0.129) 0 227 0.004 0.139 31.552

Cd to12 s 2 N(400, 1e-4) N(6, 1e-4) 227 227 0.996 0.373 84.671

Cd to12 uns 2 N(5.5e-3, 10e-6) N(0.11, 10e-5) 0 227 0.004 0.131 29.737
Table 2: #RVs = number of random variables in the model, #S S = number of δ-sat samples, #T S
= total number of samples, Est P = estimated probability of property, A T(s) = average CPU time
of each sample in seconds, and T T(s) = total CPU time for all samples in seconds.

Additional benchmarks. To further demonstrate the feasibility of SReach,
we also applied it to the following benchmarks. Table 3 shows the results of
experiments. BB refers to the bouncing ball models, Tld the thermostat model
with linear temperature decrease, Ted the thermostat model with exponential
decrease, DT the dual thermostat models, W the watertank models, DW the dual
watertank models, Que the model for queuing system which has both nonlinear
functions and nondeterministic jumps, 3dOsc the model for 3d oscillator, and
QuadC the model for quadcopter stabilization control.

Benchmark #Ms K #ODEs #Vs #RVs δ Est P #S S #T S A T(s) T T(s)

BBK1 1 1 2 14 3 0.001 0.754 5372 7126 0.086 612.836

BBK5 1 5 2 38 3 0.001 0.059 209 3628 0.253 917.884

BBwDv1 2 2 4 20 4 0.001 0.208 2206 10919 0.080 873.522

BBwDv2K2 2 2 4 20 3 0.001 0.845 7330 8669 0.209 1811.821

BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058

Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351

Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448

DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714

DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078

W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082

W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771

W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240

DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817

DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806

DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688

Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315

3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969

QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507
Table 3: #Ms = number of modes, K indicates the unfolding steps, #ODEs = number of ODEs in
the model, #Vs = number of total variables in the unfolded formulae, #RVs = number of random
variables in the model, δ = precision used in dReach, #S S = number of δ-sat samples , #T S
= total number of samples, Est P = estimated probability of the property, A T(s) = average CPU
time of each sample in seconds, and T T(s) = total CPU time for all samples in seconds.

4 Conclusions and future work
We presented a probabilistic reachability analysis tool. The tool combines δ-
decision procedures [7–9] and statistical testing techniques. It supports bounded
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reachability analysis and parameter estimation for hybrid systems with para-
metric uncertainty. This tool was used for the reachability analysis of two rep-
resentative examples - a prostate cancer treatment control and a cardiac model
- which are currently out of the reach of other formal (SMT-based) tools. In the
near future, we plan to extend support for more general stochastic hybrid models
that include probabilistic jumps with discrete or continuous distributions. Also,
we plan to develop a parallel version of our tool.
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Appendix

A Statistical tests

In this section we briefly describe the statistical techniques implemented in
SReach. To deal with qualitative questions, SReach supports the following
hypothesis testing methods.

Lai’s test [13]. As a simple class of sequential tests, it tests the one-sided
composite hypotheses H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 for the natural parameter
θ of an exponential family of distributions under the 0 − 1 loss and cost c per
observation. [13] shows that these tests have nearly optimal frequentist properties
and also provide approximate Bayes solutions with respect to a large class of
priors.

Bayes factor test [12]. The use of Bayes factors is a Bayesian alternative
to classical hypothesis testing. It is based on the Bayes theorem. Hypothesis
testing with Bayes factors is more robust than frequentist hypothesis testing, as
the Bayesian form avoids model selection bias, evaluates evidence in favor the
null hypothesis, includes model uncertainty, and allows non-nested models to be
compared. Also, frequentist significance tests become biased in favor of rejecting
the null hypothesis with sufficiently large sample size.

Bayes factor test with indifference region. A hypothesis test has ideal per-
formance if the probability of the Type-I error (respectively, Type-II error) is
exactly α (respectively, β). However, these requirements make it impossible to
ensure a low probability for both types of errors simultaneously (see [18] for
details). A solution is to use an indifference region. The indifference region in-
dicates the distance between two hypotheses, which is set to separate the two
hypotheses.

Sequential probability ratio test (SPRT) [17]. The SPRT considers a simple
hypothesis H0 : θ = θ0 against a simple alternative H1 : θ = θ1. With the
critical region Λn and two thresholds A, and B, SPRT decides that H0 is true
and stops when Λn < A. It decides that H1 is true and terminates if Λn > B.
If A < Λn < B, it will collect another observation to obtain a new critical
region Λn+1. The SPRT is optimal, among all sequential tests, in the sense that
it minimizes the average sample size.

To offer quantitative answers, SReach also supports estimation procedures
as below.

Chernoff-Hoeffding bound [11]. To estimate the mean p of a (bounded) ran-
dom variable, given a precision δ′ and coverage probability α, the Chernoff-
Hoeffding bound computes a value p′ such that |p′ − p| ≤ δ′ with probability
at least α.

Bayesian Interval Estimation with Beta prior [19]. This method estimates
p, the unknown probability that a random sampled model satisfies a specified
reachability property. The estimate will be in the form of a confidence interval,
containing p with an arbitrary high probability. [19] assumes that the unknown
p is given by a random variable, whose density is called the prior density, and
focuses on Beta priors.
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B The SReach tool

B.1 Input format

The inputs to our SReach tool are descriptions of hybrid automata with random
variables (representing the probabilistic system parameters), and the reachabil-
ity property to be checked. Following roughly the same format as the above
definition of hybrid automata, and adding the declarations of random variables,
the description of an automaton is as follows.

Preprocessor. We can use the C language syntax to define constants and
macros. It can also be used for defining random variables — see below.

Variable declaration. For a random variable, the declaration specifies its
distribution and name. For the variables which are not random variables, they
are required to be declared within bounds.

Hybrid automaton. A hybrid automaton is represented by a set of modes.
Within each mode declaration, users can specify statements for mode invari-
ant(s), flow function(s), and jump condition(s). For a mode invariant, we can
give any logic formula of the variables. For a flow function, it is expressed by an
ODE. As for a jump condition, it is written as

<logic_formula1> ==> @<tagert_mode> <logic_formula2>,

where the first logic formula is given as the guard of the jump, and the second
one specifies the reset condition after the jump.

Initial conditions and Goals. Following the declaration of modes, we can
declare one initial mode with corresponding conditions, and the reachability
properties in the end.

Example 3.1. The following is an example input file. Currently, users can specify
random variables with Bernoulli distribution, Uniform distribution, Gaussian
distribution, and Exponential distribution. (Note: it is easy to include additional
distributions if needed.)

1 #define pi 3.1416

2 N(1 ,0.1) mu1;

3 U(10 ,15) thro;

4 E(0.49) theta1;

5 B(0.75) xinit;

6 [0,5] x;

7 [0,3] time;

8 { mode 1;

9 invt:

10 (x <=1.5);

11 (x>=0);

12 flow:

13 d/dt[x]=thro *(1/( theta1*sqrt (2*pi)))

14 *exp(0-((x-mu1)^2) /(2* theta1 ^2));

15 jump:

16 (x>=( thre1 +5))==>@2(x’=x);
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17 }

18 init:

19 @1 (x=xinit);

20 goal:

21 @4 (x >=50);

B.2 Command line

After building, SReach can be simply used through:

SReach <statistical_testing_option> <filename> <dReach> <k> <delta>

where:

– statistical_testing_option is a text file containing a sequence of test
specifications. We will introduce the usages of statistical testing options in
the following part;

– filename is a .pdrh file describing the model of a hybrid system with prob-
abilistic system parameters. It is of the input format described in last sub-
section;

– dReach is a bounded reachability analyzing tool for hybrid systems based on
dReal;

– k is the number of steps of the model that the tool will explore; and
– delta is the precision for the δ-decision problem.

B.3 Statistical testing options

SReach can be used with different statistical testing methods through the fol-
lowing specifications.

Lai’s test : Lai <theta> <cost_per_sample>, where theta indicates the prob-
ability threshold.

Bayes factor test : BFT <theta> <T> <alpha> <beta>, where theta is a
probability threshold satisfying 0 < theta < 1, T is a ratio threshold satisfying
T > 1, and alpha, and beta are beta prior parameters.

BFT with indifference region: BFTI <theta> <T> <alpha> <beta> <delta>,
where, besides the parameters used in the above Bayes factor test, delta is given
to create the indifference region - [p0, p1], where p0 = theta + delta and p1 =
theta - delta. Now, it tests H0 : p ≥ p0 against H1 : p ≤ p1 .

Sequential probability ratio test (SPRT): SPRT <theta> <T> <delta>.
Chernoff-Hoeffding bound : CHB <delta1> <coverage_probability>, where

delta1 is the given precision, and coverage_probability indicates the confi-
dence.

Bayesian Interval Estimation with Beta prior :
BEST <delta1> <coverage_probability> <alpha> <beta>.
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C Model description

Atrial Fibrillation. The model has four discrete control locations, four state
variables, and nonlinear ODEs. A typical set of ODEs in the model is:

du

dt
= e+ (u− θv)(uu − u)vgfi + wsgsi − gso(u)

ds

dt
=

gs2
(1 + exp(−2k(u− us)))

− gs2s

dv

dt
= −g+

v · v
dw

dt
= −g+

w · w

The exponential term on the right-hand side of the ODE is the sigmoid function,
which often appears in modelling biological switches.

Prostate Cancer Treatment. The Prostate Cancer Treatment model exhibits
more nonlinear ODEs. The reachability questions are

dx

dt
= (αx(k1 + (1− k1)

z

z + k2
− βx((1− k3)

z

z + k4
+ k3))−m1(1− z

z0
))x+ c1x

dy

dt
= m1(1− z

z0
)x+ (αy(1− d z

z0
)− βy)y + c2y

dz

dt
=
−z
τ

+ c3z

dv

dt
= (αx(k1 + (1− k1)

z

z + k2
− βx(k3 + (1− k3)

z

z + k4
))

−m1(1− z

z0
))x+ c1x+m1(1− z

z0
)x+ (αy(1− d z

z0
)− βy)y + c2y

Electronic Oscillator. The 3dOsc model represents an electronic oscillator model
that contains nonlinear ODEs such as the following:

dx

dt
= −ax · sin(ω1 · τ)

dy

dt
= −ay · sin((ω1 + c1) · τ) · sin(ω2) · 2

dz

dt
= −az · sin((ω2 + c2) · τ) · cos(ω1) · 2

ω1

dt
= −c3 · ω1

ω2

dt
= −c4 · ω2

dτ

dt
= 1

Quadcopter Control. We developed a model that contains the full dynamics of
a quadcopter. We use the model to solve control problems by answering reach-
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ability questions. A typical set of the differential equations are the following:

dωx
dt

= L · k · (ω2
1 − ω2

3)(1/Ixx)− (Iyy − Izz)ωyωz/Ixx
dωy
dt

= L · k · (ω2
2 − ω2

4)(1/Iyy)− (Izz − Ixx)ωxωz/Iyy

dωz
dt

= b · (ω2
1 − ω2

2 + ω2
3 − ω2

4)(1/Izz)− (Ixx − Iyy)ωxωy/Izz

dφ
dt

= ωx +
sin (φ) sin (θ)(

sin(φ)2 cos(θ)
cos(φ) + cos (φ) cos (θ)

)
cos (φ)

ωy +
sin (θ)

sin(φ)2 cos(θ)
cos(φ) + cos (φ) cos (θ)

ωz

dθ
dt

= −(
sin (φ)2 cos (θ)(

sin(φ)2 cos(θ)
cos(φ) ωy + cos (φ) cos (θ)

)
cos (φ)2

+
1

cos (φ)
)ωy

− sin (φ) cos (θ)(
sin(φ)2 cos(θ)

cos(φ) + cos (φ) cos (θ)
)

cos (φ)
ωz

dψ
dt

=
sin (φ)(

sin(φ)2 cos(θ)
cos(φ) + cos (φ) cos (θ)

)
cos (φ)

ωy +
1

sin(φ)2 cos(θ)
cos(φ) + cos (φ) cos (θ)

ωz

dxp
dt

= (1/m)(sin(θ) sin(ψ)k(ω2
1 + ω2

2 + ω2
3 + ω2

4)− k · d · xp)

dyp
dt

= (1/m)(− cos(ψ) sin(θ)k(ω2
1 + ω2

2 + ω2
3 + ω2

4)− k · d · yp)

dzp
dt

= (1/m)(−g − cos(θ)k(ω2
1 + ω2

2 + ω2
3 + ω2

4)− k · d · zp

dx
dt

= xp,
dy
dt

= yp,
dz
dt

= zp


