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Abstract— We show how statistical Model Checking can be M = Pr50.9999[G*(V,u: < 5)]. This type of questions can
used for verifying properties of analog circuits. As integated be efficiently answered b§tatistical Model Checking, 2, 5],
circuit technologies scale down, manufacturing variatios in de-  the technique we use for verifying analog circuit modelsisim
vices make analog designs behave like stochastic systemsheT lated by SPICE. In particular, randomly sampled systenegac
problem of verifying stochastic systems is often difficult ecause are sequentially generated using SPICE and passed to a trace
of their large state space. Statistical Model Checking candan checker (see Section Il for a brief description of the checke
efficient verification technique for stochastic systems. Ithis pa-  to determine whether they satisfy a given specificationil unt
per, we use sequential statistical techniques and model otiéng  the desired statistical strength is achieved. We demdestra
to verify properties of analog circuits in both the temporal and  the technique with a simple analog circuit (Section 1IV) — an
the frequency domain. In particular, randomly sampled sysem operational amplifier — and we empirically show (Section V)
traces are sequentially generated by SPICE and passed to aage  that verification by statistical model checking is a feasidp-
checker to determine whether they satisfy a given specifican,  proach.
until the desired statistical strength is achieved.

Il. BOUNDED LINEAR TEMPORAL LOGIC

|. INTRODUCTION . . . .
The Bounded Linear Temporal Logic (BLTL) is a variant of

As IC technologies move toward higher integration densit{ie well-known Linear Temporal Logic [8] in which temporal
with substantially small feature sizes, a greater conckana- Operators are bounded.
|Og designers is circuit resi”ency under heavy proces'ﬁ. var Let SV be a finite set of real-valued variables. An atomic
ability. Since process variation brings stochastic efféato  PropositionAP is a boolean predicate of the fore ~ e,
the model, the problem of verifying analog circuits is tutne Wheree; ande, are arithmetic expressions over variables in
into the problem of verifying that a stochastic system satis’V’, and the relational operateris either<, <, >, > or=. A
fies a certain property. In the past few years there has beBhTL property is built over atomic propositions using boarte
growing interest in the formal verification of stochasticssy connectives and bounded temporal operators. The syntax of
tems by means of model checking techniques, see for examfi logic is the following:
[1, 2,3, 4,5, 6] and [7]. The verification problem is to decide .
whether a stochastic model satisfies a property wighoda- ¢ = AP [ 01V 2| ¢1 N2 [ 21 | 91U .
bility gr.eater than or equal to a certal-n. thrgshold. The bounded until operatar, U ¢, requires thatwithin time

lln thIS.WOI‘k, we agidressd tfhe venﬁca(tjlon O.f both t(:tl;npo%’ @2 Will be true andp; will hold until then. Bounded versions
;?1a(lt(r)znsiﬁ:r:i)tsproﬁr?erztlgrsogzrtiergq;rzngr_)rggsgg E;Ogienzpooélthe ?suaF andG operators can be easily 9efindé‘:qi =
logic in which the temporal operators are equipped with timgme U'¢ requiresy to hold true within timet; G'¢ := =F*~¢

Fequiresab to hold true up to time.
b(.)”unlds Fortex%mlple,stheltprp Fiﬁrty thte88:'.tDUt vq:t%g@t; . The semantics of BLTL is defined with respecttaces(or
wiitalways stay be 2§V voltsin the nex IME units 1S i executions) of a system. In our case, a trace is a sequence of
ten in our logic a$s™" (V,,+ < 5). We ask whether a stochas-

tic systemM satisfies that formula with a probability greaterSlgnal valuesg.g, voltages) generated by a SPICE simulation

; .of an analog circuit. Formally, a trace is a sequence of state
than or equal to a fixed threshold (say 0.9999), and we W”Wansitions of the form — (s, o), (s1, t1), ..., which denotes

*This research was sponsored by the GSRC under contract niglat the system moved to statg ; after having sojourned for
1041377 (Princeton University), National Science Fouiodatnder contracts time (duration); in states;. If tracec satisfies BLTL property

tor Research Corporation under contract no. 2005TJ1366g1@eMotors K . . . . . .
under contract no. GMCMUCRLNV301, Air Force (Vanderbilt idgrsity) bya - The satisfaction relation of BLTL is defined in terms of

under contract no. 18727S3, and the Office of Naval Researderiaward ~ durations as follows [2].
no. N000141010188.




Definition. The semantics of BLTL on trace” is: be carried out except that a node can now have more than one
parent and it has to propagate its value to all of them.

o o" = AP iff AP holds true in statey; In short, the algorithm can be thought of as a space-efficient
e dh =gV, iff oF | grorat = unrolling of an automaton af as the observations of the trace

e of =g Ny iff oF = ¢ ando® | ¢y, become available. When an accepting or a rejecting state is
o of = ¢y iff o* |= ¢ does not hold; reached, the algorithm terminates with the answer.

e oF = ¢ U'¢, iff there existsi > 0 such that, The complexity of the algorithm also depends on the granu-

i1 larity of the system simulatiori.€., the number of simulation
8) Yizo trs <t aNd | time unit.) If ider only irak

P p steps to cover one real time unit.) If we consider only inaégr

b) o™ |= ¢, an _ time-stamps (and thereby fix the granularity), the compyexi

c) foreachd < j <i, 0% |= ¢,. is polynomial in the size of (which includes both its length

and the time constants appearing in it) and linear in theréieo

: Itis easy tg define azlequwalen;t]sen;]anncs W'th reS]PECLtTF?aI maximum length of the finite prefix of the trace necessary
jume-s.tampe .”?C.es- S0, notg that the semanus:s ot 110r monitoring. The complete details of the algorithm argd it
is defined oveinfinite traces, while of course any simulation

L analysis will be given in a forthcoming paper.
trace must be finite in length. It can be shown that traces of an y g gpap

appropriate (finite) length are sufficient to decide BLTL jpro
erties [2]. [1l. STATISTICAL MODEL CHECKING

The verification problem for a stochastic systér can be
A. Monitoring the traces phrased as follows: given a threshéld= (0,1) and a BLTL
gormula ¢, decide whethetM = Pr>¢(¢); that is, decide
whetherM satisfiesp with probability greater than or equal to
6. Note that this problem is well-defined, since it can be shown
that the set of traces o¥1 satisfyinge is measurable, thereby
defining the probability that M satisfiesp [3].

Suppose now that the stochastic systdrh satisfies the
BLTL formula ¢ with some (unknown) probability. The
key idea behind statistical model checking [3] is that the be
nodes of the tree representing the operafbérwith the time havior OfM (with respept to pr.operty)) can be modeled. by

a Bernoulli random variable with success parameteiThis

boundt and makes a copy of it for reference (call it thed- . : :
i ; random variable can be repeatedly evaluated via system sim-
erencetree). Then, from the first observation on the trace, it

assigns values to all the variables3i appearing inp, which ulation n the foIIowmg way. Let a ”"?“?e OfM, then_th(.e
are also the leaf nodes of the parse tree. These values are tﬁgrnoulh random variablé’ with probability mass function:
propagated up the tree evaluating each node from the values fzlp) =p"(1 —p)'™® ze€{0,1} (1)
of all its children. Now, a node may not obtain values from . .
all the children during this propagation or if a node repnese denotes the outcome of = ¢'_ (e, model checking on o).
U? it may need to seaheadin the trace, i.e. wait for a future In other words, we have that:

observation, to be evaluated. This is reflected ippeassoci- {1 with probabilityp (o E ¢),

~ )0 with probabilityl — p (0 = —¢).

In this section we describe briefly the algorithm we use t
decide & |= ¢”, which is also known as themonitoringprob-
lem. Our monitoring algorithm is designed to work onlinetwit
the trace generation (after a possible integration witlytdreer-
ator). To be precise, the online nature of the algorithm atesa
the necessity to store any portion of the trace for later nse a
implies the earliest termination of the trace monitoring.

The algorithm first builds a parse tree 6f annotating the

ated with each node. Thus, value propagations from children = 2)
parents will result in a change of type in the parents (anal als
deletion of those children). Once all the possible propgagat Therefore, by running a system simulation and by checking
are done, the algorithm either terminates with a positivesgr ¢ on the resulting trace we can obtain a sample from random
ative answer if the root node is evaluated and looks for thé nevariableX .
observation on the trace otherwise. Statistical model checking approaches the verificatiobpro

A naive approach to continue monitoring would be to uskem as a statistical inference problem and solves it by ran-
thereferenceree to get the corresponding subtree for each afomized sampling of traces (simulations) from the model—by
the nodes waiting for a future observation and make the rodtse paragraph above, this is equivalent to sampling from ran
of these subtrees children of these (respective) nodes, (aldom variableX. The inference problem can then be solved
changing the time annotation of the roots to reflect the timey means of hypothesis testing [3, 9, 5] or estimation [4].
duration of the previous observation). This maintains teet The former amounts to deciding between two hypotheses —
structure and the algorithm looks at the next observatidthen M = Prxg[¢] versusM = Pr.g[¢]. The latter instead
trace to evaluate the tree bottom-up as described before. Bapproximates probabilistically (that is, it computes whikgh
the above approach can be very inefficient. To address thptpbability anestimateclose to) the true probability that ¢
we use an optimization to avoid redundant copiesiofilar  holds, and then compares that estimate within both ap-
nodes, which can be presentin the different subtrees nmattio proaches sampled traces are model checked individuallg-to d
above, resulting in a DAG. The same bottom-up evaluation caarmine whether propertyholds, and the number of satisfying



traces is used by the hypothesis testing (or estimatiorggaro Therefore, B can be interpreted as a measure of evidence
dure to decide betweem > 6 andp < 6. (In the case of (given by the datal) in favor of Hy. Now, fix a threshold
estimation, one also has an estimate which is clogewith 7" > 1. The algorithm iteratively draws independent and iden-
high probability.) Note that statistical model checkingieat tically distributed (iid) sample traces;, o2, ..., and checks
guarantee a correct answer to the verification problem. Howrhether they satisfy. After checking each trace, the algo-
ever, the probability of giving a wrong answer can be madethm computes the Bayes FactBrto check if it has obtained
arbitrarily small. conclusive evidence. The algorithm acceffisif B > T, and
Sequential Bayesian hypothesis testing and estimatioa haejectsH, (acceptingH;) if B < % Otherwise(% <B<LT)
been recently introduced and applied to the verification af continues drawing iid samples.
stochastic hybrid systems coded as Stateflow/Simulink mod- The Bayes factor ofiy:p > 6 vs. Hy:p < 6 with Bernoulli

els [2]. We now briefly describe both techniques. samplegz,...,z,) and Beta prior of parametess 3 can be
computed in terms of the Beta distribution function as:
A. Bayesian Hypothesis Testing P(H)) 1
In hypothesis testing we decide between a null hypothesis Bn = P(Hy) ' (F(m+a7n_m+5)(9) B 1)
Hy and an alternative hypothedis :
wherex = >~ | z; is the number of successedin, . .., z,)
Ho:p=90 Hy:p<0 . 3) [2]. The Beta distribution function can be efficiently conted

by standard software packages, such as the GNU Scientific Li-
brary. Therefore, no numerical integration is requiredtfa
rqe{aluation of the Bayes Factor.

Finally, it is most important to bound the error probability

The Bayesian approach assumes that given by a random
variable, whose distribution is called thmior distribution.
The prior is usually based on our previous experiences a
knowledge about the system. Singeis a probability, we . . ) :
need prior distributions defined ovfr, 1]. In particular, for e, the p_ro_bablllty that we reject (accept) the null hypotbesi
mathematical convenience one uses Beta priors, which are &%though itis true (false).

fined by the following probability density (for real pararet  Theorem. [2] The error probability for the Bayesian hypoth-

a, 8> 0): esis testing algorithm is bounded above-pywhereT is the
1 Bayes Factor threshold given as input.
Vu € [07 1] g(ua «, ﬂ) = 7“‘&71(1 - u)ﬁ71 (4) . . .
B(a, B) We note that the (vastly) dominant complexity factor in sta-

tistical model checking is due to system simulation. The com

where the Beta functioB(«, 3) is defined as: ! . : . .
plexity of statistical computatiorger seis not an issue.

1
B(a,ﬂ):/ (1 — )Pt 5) , o
0 B. Bayesian Interval Estimation.

For later use in both the hypothesis test and estimation-algo In estimation one is interested in computing a value (an esti
rithms, the Beta distribution functiof,, 5)(u) of parameters mate) which is, with high probability, close to the true prob-

a, (3 is defined for allu € [0, 1]: ability that the model satisfies a given property. The esttma
“ is usually in the form of a confidence interval - an interval in
Flap)(u) = /0 g(t,a, 3) dt . (6) [0, 1] which containg with high probability. The estimation

method makes use of Bayes’ theorem for densities.

Letd = (x1,...,x,) denoten samples of the Bernoulli ran-
dom variableX defined by (2). Lef{, andH; be the hypothe-
ses in (3), and suppose that fhwor probabilities P(H,) and
P(H,) are strictly positive and satisti(Hy) + P(Hy) = 1.
By Bayes’ theorem, thposterior probabilitiesof Hy, and H,
with respect to datd are:

Proposition (Bayes Theorem for densitied)etx, ..., z, be
a sample drawn from a densif}(-|u), whereu is given by a
random variableU over (0,1) with density isg. Then, the
posterior density of/ given the datac,, ..., x, ISs:

P(d|H;)P(H;) Jo f@r,. . anv)g(v) dv
P(d) Since we assume conditionally independent, identically di

for everyd with P(d) > 0. In our caseP(d) is always non- {ributed - iid - samples, the densif{z,, . .., z, |u) factorizes
zero - there are no impossibiimite sequences of data. The@SII;_ f(zilu), wheref(z;|u) is a Bernoulli mass function
hypothesis test method is based on the Bayes Factor, whicigin (1). S

the likelihood ratio of the sampled data with respect towe t ~ For a prior distribution ovep and sampled data, Bayes’ the-

Hy andH, is of p given the data sampled and chosen prior). This means

_ P(d|Hy) that one can estimajewith the mean of the posterior distribu-

B= P(d|Hy) tion. Furthermore, by integrating the posterior densitgrow

Q(U|I17 s ,In)

P(H;|d) = (i=0,1)



vdd vdd

cess. The SPICE simulator returns both transient and AC re-
sponses so that our BLTL trace checker can check the compli-
ance of the simulated traces to both transient and frequency
domain properties. Note that different specifications aeam
sured under different circuit configurations, differerndun sig-

nals and different kinds of simulations.

- - A. Transient Properties
(a) (b)
The compliance of the model circuit to the specifications

Fig. 1. (a) The two-stage OP amplifier; (b) The inverting configuregplifier ~ given in Table | can be measured directly from the simula-
tion traces. Since BLTL formulae specify temporal proper-
ties over traces, we can translate the specifications inid_BL

formulae. For example, input offset voltage is defined as the

TABLE | . L
THE SET OF SPECIFICATIONS USED IN THE EXPERIMENT value of differential input that makes output equal to the DC
_ _ biasing voltage, which is 0.6 volts in this example. There-
[SpedName [ Value | Simulation| fore, we can specify this property by the following formula:
1 |Input Offset Voltage <lmvV Transient G[100u5]((vout = 0.6) — (|Vine — Vin_| < 1mV)), where
2 | Output Swing Range 0.2Vto 1.0 V| Transient . . . . . .
3 |Slew Rate 25 V/uSec | Transient 100 us is the e_nd_ time of tr_ar_15|ent simulation. This formula
4 |Open-Loop Voltage Gain ~8000 V/V AC states that “Within 10Qus, it is always the case that when
5 |Loop-Gain Unit-gain Frequengy>10 MHz AC Vour €quals 0.6 volts, the difference betweeén . andV;,_
6 |Phase Margin >60° AC is smaller than InV". However, the formula might be evalu-

ated as true whil&,,,; never equals 0.6 volts within 10, or

suitably chosen interval one can compute a Bayes interval élgeoreGmigiht nlort1 be %}saméa_lde pointa/vgé/f(;ei\tt is_?:](actlfy equal
timate with any given confidence probability. Fix a confidﬁ\nctoh ' I_;a/l(_)'I:[E ?t oulg ‘C‘Vt hl' iggs 'VVO ts. erﬁ ore, ar-
probabilityc € (1, 1) and a half-interval widtid € (0, 1). The ~ Oter ormula, "Within 100us, V,.; eventually equals

algorithm iteratively draws iid traces, checks whethey thet- 0.6 volts”, is added in conjunction to prune OUt_ the ;ltuat|o
isfy ¢, and builds an interval of total widt?y, centered on the Wh_ereV(_)ut never equals 0.6 volts. Also, we use Ilnear_ Interpo-
posterior mean. If the posterior probability over such rivei lation with an gbsolute tolerance O/ﬂ.y for equality te_stln_g_ to

is greater than: the algorithm stops; otherwise, it continuescapture crossing events. The resulting BLTL transientifipec

sampling. The algorithm thus returns an interval of lerggth  Cations are summarized in the upper half of Table II.
which containg with probability at least. It also returns the
posterior mean as an estimatepof B. Frequency-Domain Properties
Again, the posterior probability of an interval is straifgint . . . .
' o . As opposed to introducing a frequency-domain predipate
wardly calculated by means of the Beta distribution funttio . PP 9 9 Y predipa

. - ) involving Fourier transformation and then statisticallypadel
The posterior probability over the intervab, ¢;) can be com- . . .
puted as [2]: checkingPr>y(pr) as described in [1], we elaborate the no-

tion of frequency-domain predicates for more general analo
specifications by providing capability to specify propeston

ty
/ q(ulxy, ... zpn) du = AC small-signal responses. Since AC responses are waveform
to sampled at different input frequencies in a strictly insirg
Fiatan—o+8)(t1) = Flatan—at+p)(to) manner just like time-stamps in transient responses, we sim

ply substitute frequency-stamps for time-stamps to chesk f
guency domain properties using the same BLTL trace checker.
The BLTL specifications for frequency-domain properties ar
summarized in the lower half of Table Il. Note that the AC
IV. SPICEMODEL response is complex-valued/magand Vphaseare used to

represent the magnitude and phase of the AC response.
We study a gate-level SPICE model describing a two-stage
operational amplifier (op amp) as shown in Fig. 1(a). The op
amp is compensated in its bandwidth to ensure stability when V. RESULTS
it is employed in an inverting amplifier system as shown in )
Fig. 1(b). Finally, the op amp is designed to satisfy the 'specA' Experimental Setup
fications shown in Table | with a CMOS 90nm technology. All our experiments have been performed on a Linux virtual
In [1], the authors used a MATLAB Simulink model, while machine running on a Windows 7, 2.26GHz i3-350M, 4GB
in this work we prefer SPICE models, which are more comRAM computer. The circuit simulator used was NGSPICE,

monly used throughout the analog design and validation prand the BLTL trace checker was written in C++.

wherea andj3 are the Beta prior parameters, ane- Y., z;
is the number of successes in the saniple. . . , x,,).



TABLE Il TABLE Il
THE SET OFBLTL FORMULAE USED TO SPECIFY PROPERTIES RESULTS OFMONTE CARLO AND SMC WITH UNIFORM PRIORS
THRESHOLDA = 0.95, T=1000y4": Hy ACCEPTED, X: Hy REJECTED

| Sped BLTL Formula for transient properties

100 Monte Carlo (1000 samples) — Measured Value SMC
1 |FI00msl (V. = 0.6) B - -
(100u3] Specification | Mean| Stdde\] Yield | Samples/Runtim
N o L out = 0.6) o (Vg =3 < 0.001)) 1[Offset Voltage (mV) 436 [ 597 826 [ x 3139
2 |FUPRS (Vouy < 0.2) AR (Vouy > 1.0) 2| Swing Range Min (V) .104 |.006 [1.00 |v77/98s
3|GOSl (Vous = 1.0 A Vip > 0.65) — FIO-008sI (1,0 < 0.8)) Swing Range Max (V) 1.08 |.005 [1.00 |v77/98s
A(Vout = 0.2 A Vi, < 0.55) — FI0-008us] (1 > 0.4)) 3|Negative Slew Rate (Y/Sec)[-40.2(1.17 [1.00 |v77/98s
- - Positive Slew Rate (V/Sec) [56.4 [2.54 [1.00 |v'77/98s
Sped BLTL Formula for frequency-domain properties 4| Open-Loop Gain (V/V) 8768|448 | 975 | v239/303s
4 |GIEH(Vinagey: > 8000) 5|Loop-Gain UGF (MHz)  |19.9 |0.30 |1.00 |v77/98s
5 |GIOMH(Vinag,,: > 1) 6| Phase Margin9) 64.1 |0.44 |1.00 |v77/98s
6 F[mGHZ](Vmaguut =1)
AGIOGHZ](Vmagyu: = 1) — (Vphaseou: > 60°))
TABLE IV

NUMBER OF SAMPLES/RUNTIME VS. PROBABILITY THRESHOLD FOR
To model the process variation, threshold voltage and ox-SMCWITH UNIFORM PRIORS ANDT=1000,v":Ho ACCEPTED, x:Ho

ide thickness, gate width and gate length of each MOSFET REJECTED
are specified by normal random variables, so the circuit tnigh Probability Threshold
fail to satisfy specifications under certain values of pagtars. [Sped 0.7 | 0.8 [ 09 [ 099 [ 0.99

V' 77/1059 v'9933/121615x 201/275g x 10/13s X 7/9s
v'16/18s | v'24/27s v44/51s | v'239/280s |v693/8139
v'16/23s | v'24/31s v44/57s | v'239/316s |v'693/9169
v'23/26s | v'43/49s v'98/114s | x 1103/1309% x 50/57s
v'16/18s | v'24/28s v44/51s | v'239/279s |v'693/8079
v'16/20s | v'24/30s v'44/55s | v'239/303s |v693/8829

For example, a differential pair designed symmetricallyugti
have zero input offset voltage. However, process variataom
induce mismatches between the differential pair so thabthe
amp might have a non-zero offset voltage larger than spdcifie

OO WNPE

B. Statistical Model Checking

For each experiment, the null hypothe§if, ), the property  dominates the total runtime (277.9s, 91.7% of the total run-
we would like to check, is a formula in Table Il with a proba-time), while the BLTL trace checker took 24.6s, and the func-
bility thresholdd. For example, consider Spec 4 ahet 0.95,  tions for file format conversion and interpolating of croggi
we model check the following formula (null hypothe$is) :  events took 0.27s. We note that the time spent on computing
the statistical tests was only 0.32s.

Next, in Table IV we report the results of different proba-
bility thresholds. In most cases, SMC terminates very duick
even with a probability threshold of 0.999. Higher numbdrs o
samples occur when the actual probability that the formaila i
in the first place. true is very close to the threshold. In our op amp example, the

In the commonly used Monte Carlo simulation, the usdprobability of satisfying Spec 1 is close to 0.8, and thisitiss

determines the number of samples, which reflects the testiHba runtime of 12161s (9933 samples).
strength needed. The sample size is normally larger tha@,100 Finally, we use the Bayesian estimation algorithm with uni-
and it can grow up to tens of thousand to obtain results witlrm priors to estimate the unknown probabilitthat the op
reasonable accuracy. In this experiment, the sample sized®p satisfies each specification. Two experiments were per-
chosen to be 1000. In Table Ill, we summarize the results &rmed with half-interval widths = 0.05 andé = 0.01. For

the 1000-sample Monte Carlo simulation and Bayesian SMeachd, we used two values of the confidence probability. Ex-
algorithm with = 0.95 and Bayes factor threshold T = 1000,Perimental results are shown in Table V and VI.

that is, the probability of error is bounded by 0.001. As seen

in the table, the measured means and variances of Spec 2, 3,

5 and 6 show that design margins are adequate, so very high TABLE V

yields can be expected. In contrast to Spec 2, 3, 5, 6, theé OPosTERIORMEAN/SAMPLES/RUNTIME VS. INTERVAL COVERAGE FOR
amp’s 3-sigma performance (megaBx variance) does not sat- BAYESIAN ESTIMATION METHOD WITH UNIFORM PRIORS AND §=0.05

isfy Spec 1 and 4. This suggests the need for stricter design FGral CoveTage

margins in Spec 1 and 4 for high yield, although Spec 4 satis- 599 5999

fies the yield of 0.95. The SMC algorithm terminates in 303s [Spec |Mean |SamplegRuntime| Mean | SamplegRuntime]
with largest sample size of 239 (less than one-fourth of the [T 0.8087410 530s 10.8105652  |858s
Monte Carlo simulation), which is relatively good for such a 4 0.9591 96 122s  |0.9685125  |164s
small error probability. With no surprise, circuit simutat 2,3,5,§0.977743 55s  |0.985065 84s

M E Prso.05[GMH (Vmag,,, > 8000)] .

The probability threshold should be set according to the
user’s needs. To achieve a good yield for the circuit afteruma
facturing,d needs to be set close to one, so we ch@dose).95




TABLE VI Monte Carlo sampling, and statistical testing and estiomati
POSTERIORMEAN/SAMPLES/RUNTIME VS. INTERVAL COVERAGE FOR AISO'_ _We_have dem_onStrated the_fea_3|bll_|ty of usm_g BLTL
BAYESIAN ESTIMATION METHOD WITH UNIFORM PRIORS AND=0.01  Specifications for a simple analog circuit. Since BLTL is ayve
expressive language which can specify complex interastion

. Interval Coverage . between signals, we expect that our approach will be able to
[Spec_|Mean [Sample3Runtime| Mean [Sample§Runtime verify circuits with more complicated specifications. Adtigh
1 0.8114 10150 1136055 108124 16512 |21685s in statistical model checking a correct answer cannot be-gua
4 0.966012204 |2860s |0.96853860 |5098s anteed, the error probability can be made arbitrarily simgall
2,3,5,60.9956227  |296s |0.9970341  |439s the user. For more speedup, we are investigating the integra

tion of our algorithm with online BLTL checking, which can
. . terminate simulation as soon as the property can be decided.
C. Discussion

The experimental results show that the Bayes estimation al-
gorithm is more efficient whenis close to one but needs more
samples whep is closer to 0.5. This is due to the fact that the [1] E. M. Clarke, A. Donzé, and A. Legay, “Statistical moaélecking of

variance of a Bernoulli random variable is the largest when  Mixed-analog circuits with an application to a third ordeitasigma
9 modulator,” inHaifa Verification Conference 'Q&er. LNCS, vol. 5394,

p=05. _ - 2009, pp. 149-163.
The Bayesian SMC algorithm is faster when the threshold
2] P. Zuliani, A. Platzer, and E. M. Clarke, “Bayesian stitial model

PrObablhtye differs S|gn|f|cant!y from the unknown prObabll- checking with application to Stateflow/Simulink verifiaaii” in HSCG

ity p, and it works better whefhis close to one (or zero). Since 2010, pp. 243-252.

circuits are designed in order for manufactured chips taehav _ —
ields close to one. the threshold probabilitshould be set 3] H. L.S. Younes and R. G. Simmons, “Statistical probakiti model

yie - ! - p ¥ - S~ checking with a focus on time-bounded propertidsf! Comput, vol.

accordingly. Therefore, statistical model checking igljkto 204, no. 9, pp. 1368-1409, 2006.

work well for the problem of analog circuit verification.
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