
Analog Circuit Verification by Statistical Model Checking

Ying-Chih Wang∗, Anvesh Komuravelli†, Paolo Zuliani† and Edmund M. Clarke†
∗ Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

Email: yingchiw@ece.cmu.edu
† Computer Science Department, Carnegie Mellon University,Pittsburgh, PA 15213

Email:{anvesh, pzuliani, emc}@cs.cmu.edu∗

Abstract— We show how statistical Model Checking can be
used for verifying properties of analog circuits. As integrated
circuit technologies scale down, manufacturing variations in de-
vices make analog designs behave like stochastic systems. The
problem of verifying stochastic systems is often difficult because
of their large state space. Statistical Model Checking can be an
efficient verification technique for stochastic systems. Inthis pa-
per, we use sequential statistical techniques and model checking
to verify properties of analog circuits in both the temporal and
the frequency domain. In particular, randomly sampled system
traces are sequentially generated by SPICE and passed to a trace
checker to determine whether they satisfy a given specification,
until the desired statistical strength is achieved.

I. I NTRODUCTION

As IC technologies move toward higher integration density
with substantially small feature sizes, a greater concern of ana-
log designers is circuit resiliency under heavy process vari-
ability. Since process variation brings stochastic effects into
the model, the problem of verifying analog circuits is turned
into the problem of verifying that a stochastic system satis-
fies a certain property. In the past few years there has been
growing interest in the formal verification of stochastic sys-
tems by means of model checking techniques, see for example
[1, 2, 3, 4, 5, 6] and [7]. The verification problem is to decide
whether a stochastic model satisfies a property with aproba-
bility greater than or equal to a certain threshold.

In this work, we address the verification of both tempo-
ral (transient) properties and frequency-domain properties for
analog circuits. The properties are expressed by a temporal
logic in which the temporal operators are equipped with time
bounds. For example, the property “the output voltageVout

will always stay below 5 volts in the next 80 time units” is writ-
ten in our logic asG80(Vout < 5). We ask whether a stochas-
tic systemM satisfies that formula with a probability greater
than or equal to a fixed threshold (say 0.9999), and we write

∗This research was sponsored by the GSRC under contract no.
1041377 (Princeton University), National Science Foundation under contracts
no. CNS0926181, no. CCF0541245, and no. CNS0931985, Semiconduc-
tor Research Corporation under contract no. 2005TJ1366, General Motors
under contract no. GMCMUCRLNV301, Air Force (Vanderbilt University)
under contract no. 18727S3, and the Office of Naval Research under award
no. N000141010188.

M |= Pr>0.9999[G
80(Vout < 5)]. This type of questions can

be efficiently answered byStatistical Model Checking[3, 2, 5],
the technique we use for verifying analog circuit models simu-
lated by SPICE. In particular, randomly sampled system traces
are sequentially generated using SPICE and passed to a trace
checker (see Section II for a brief description of the checker)
to determine whether they satisfy a given specification, until
the desired statistical strength is achieved. We demonstrate
the technique with a simple analog circuit (Section IV) – an
operational amplifier – and we empirically show (Section V)
that verification by statistical model checking is a feasible ap-
proach.

II. B OUNDED L INEAR TEMPORAL LOGIC

The Bounded Linear Temporal Logic (BLTL) is a variant of
the well-known Linear Temporal Logic [8] in which temporal
operators are bounded.

Let SV be a finite set of real-valued variables. An atomic
propositionAP is a boolean predicate of the forme1 ∼ e2,
wheree1 ande2 are arithmetic expressions over variables in
SV , and the relational operator∼ is either<,≤, >,≥ or =. A
BLTL property is built over atomic propositions using boolean
connectives and bounded temporal operators. The syntax of
the logic is the following:

φ ::= AP | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ1 | φ1Utφ2.

The bounded until operatorφ1Utφ2 requires that,within time
t, φ2 will be true andφ1 will hold until then. Bounded versions
of the usualF andG operators can be easily defined:Ftφ :=
true Utφ requiresφ to hold true within timet; Gtφ := ¬Ft¬φ

requiresφ to hold true up to timet.
The semantics of BLTL is defined with respect totraces(or

executions) of a system. In our case, a trace is a sequence of
signal values (e.g., voltages) generated by a SPICE simulation
of an analog circuit. Formally, a trace is a sequence of state
transitions of the formσ = (s0, t0), (s1, t1), ..., which denotes
that the system moved to statesi+1 after having sojourned for
time (duration)ti in statesi. If traceσ satisfies BLTL property
φ we writeσ |= φ. We denote the trace suffix starting at stepk

by σk. The satisfaction relation of BLTL is defined in terms of
durations as follows [2].

Definition. The semantics of BLTL on traceσk is:

• σk |= AP iff AP holds true in statesk;
• σk |= φ1 ∨ φ2 iff σk |= φ1 or σk |= φ2;
• σk |= φ1 ∧ φ2 iff σk |= φ1 andσk |= φ2;
• σk |= ¬φ1 iff σk |= φ1 does not hold;
• σk |= φ1Utφ2 iff there existsi ≥ 0 such that,

a)
∑i−1

l=0 tk+l ≤ t, and

b) σk+i |= φ2, and

c) for each0 ≤ j < i, σk+j |= φ1.

It is easy to define an equivalent semantics with respect to
time-stamped traces. Also, note that the semantics of BLTL
is defined overinfinite traces, while of course any simulation
trace must be finite in length. It can be shown that traces of an
appropriate (finite) length are sufficient to decide BLTL prop-
erties [2].

A. Monitoring the traces

In this section we describe briefly the algorithm we use to
decide “σ |= φ”, which is also known as themonitoringprob-
lem. Our monitoring algorithm is designed to work online with
the trace generation (after a possible integration with thegener-
ator). To be precise, the online nature of the algorithm obviates
the necessity to store any portion of the trace for later use and
implies the earliest termination of the trace monitoring.

The algorithm first builds a parse tree ofφ, annotating the
nodes of the tree representing the operatorU

t with the time
boundt and makes a copy of it for reference (call it theref-
erencetree). Then, from the first observation on the trace, it
assigns values to all the variables inSV appearing inφ, which
are also the leaf nodes of the parse tree. These values are then
propagated up the tree evaluating each node from the values
of all its children. Now, a node may not obtain values from
all the children during this propagation or if a node represents
U

t it may need to seeaheadin the trace, i.e. wait for a future
observation, to be evaluated. This is reflected in atypeassoci-
ated with each node. Thus, value propagations from childrento
parents will result in a change of type in the parents (and also,
deletion of those children). Once all the possible propagations
are done, the algorithm either terminates with a positive orneg-
ative answer if the root node is evaluated and looks for the next
observation on the trace otherwise.

A naı̈ve approach to continue monitoring would be to use
the referencetree to get the corresponding subtree for each of
the nodes waiting for a future observation and make the roots
of these subtrees children of these (respective) nodes (also,
changing the time annotation of the roots to reflect the time
duration of the previous observation). This maintains the tree
structure and the algorithm looks at the next observation onthe
trace to evaluate the tree bottom-up as described before. But,
the above approach can be very inefficient. To address that,
we use an optimization to avoid redundant copies ofsimilar
nodes, which can be present in the different subtrees mentioned
above, resulting in a DAG. The same bottom-up evaluation can

be carried out except that a node can now have more than one
parent and it has to propagate its value to all of them.

In short, the algorithm can be thought of as a space-efficient
unrolling of an automaton ofφ as the observations of the trace
become available. When an accepting or a rejecting state is
reached, the algorithm terminates with the answer.

The complexity of the algorithm also depends on the granu-
larity of the system simulation (i.e., the number of simulation
steps to cover one real time unit.) If we consider only integral
time-stamps (and thereby fix the granularity), the complexity
is polynomial in the size ofφ (which includes both its length
and the time constants appearing in it) and linear in the theoret-
ical maximum length of the finite prefix of the trace necessary
for monitoring. The complete details of the algorithm and its
analysis will be given in a forthcoming paper.

III. STATISTICAL MODEL CHECKING

The verification problem for a stochastic systemM can be
phrased as follows: given a thresholdθ ∈ (0, 1) and a BLTL
formula φ, decide whetherM |= Pr>θ(φ); that is, decide
whetherM satisfiesφ with probability greater than or equal to
θ. Note that this problem is well-defined, since it can be shown
that the set of traces ofM satisfyingφ is measurable, thereby
defining the probabilityp thatM satisfiesφ [3].

Suppose now that the stochastic systemM satisfies the
BLTL formula φ with some (unknown) probabilityp. The
key idea behind statistical model checking [3] is that the be-
havior ofM (with respect to propertyφ) can be modeled by
a Bernoulli random variable with success parameterp. This
random variable can be repeatedly evaluated via system sim-
ulation in the following way. Letσ a trace ofM, then the
Bernoulli random variableX with probability mass function:

f(x|p) = px(1 − p)1−x x ∈ {0, 1} (1)

denotes the outcome ofσ |= φ, (i.e., model checkingφ onσ).
In other words, we have that:

X =

{

1 with probabilityp (σ |= φ),

0 with probability1 − p (σ |= ¬φ).
(2)

Therefore, by running a system simulation and by checking
φ on the resulting trace we can obtain a sample from random
variableX .

Statistical model checking approaches the verification prob-
lem as a statistical inference problem and solves it by ran-
domized sampling of traces (simulations) from the model—by
the paragraph above, this is equivalent to sampling from ran-
dom variableX . The inference problem can then be solved
by means of hypothesis testing [3, 9, 5] or estimation [4].
The former amounts to deciding between two hypotheses –
M |= Pr>θ[φ] versusM |= Pr<θ[φ]. The latter instead
approximates probabilistically (that is, it computes withhigh
probability anestimateclose to) the true probabilityp that φ
holds, and then compares that estimate withθ. In both ap-
proaches sampled traces are model checked individually to de-
termine whether propertyφ holds, and the number of satisfying

traces is used by the hypothesis testing (or estimation) proce-
dure to decide betweenp > θ andp < θ. (In the case of
estimation, one also has an estimate which is close top with
high probability.) Note that statistical model checking cannot
guarantee a correct answer to the verification problem. How-
ever, the probability of giving a wrong answer can be made
arbitrarily small.

Sequential Bayesian hypothesis testing and estimation have
been recently introduced and applied to the verification of
stochastic hybrid systems coded as Stateflow/Simulink mod-
els [2]. We now briefly describe both techniques.

A. Bayesian Hypothesis Testing

In hypothesis testing we decide between a null hypothesis
H0 and an alternative hypothesisH1:

H0 : p > θ H1 : p < θ . (3)

The Bayesian approach assumes thatp is given by a random
variable, whose distribution is called theprior distribution.
The prior is usually based on our previous experiences and
knowledge about the system. Sincep is a probability, we
need prior distributions defined over[0, 1]. In particular, for
mathematical convenience one uses Beta priors, which are de-
fined by the following probability density (for real parameters
α, β > 0):

∀u ∈ [0, 1] g(u, α, β) =
1

B(α, β)
uα−1(1 − u)β−1 (4)

where the Beta functionB(α, β) is defined as:

B(α, β) =

∫ 1

0

tα−1(1 − t)β−1dt . (5)

For later use in both the hypothesis test and estimation algo-
rithms, the Beta distribution functionF(α,β)(u) of parameters
α, β is defined for allu ∈ [0, 1]:

F(α,β)(u) =

∫ u

0

g(t, α, β) dt . (6)

Letd = (x1, . . . , xn) denoten samples of the Bernoulli ran-
dom variableX defined by (2). LetH0 andH1 be the hypothe-
ses in (3), and suppose that theprior probabilitiesP (H0) and
P (H1) are strictly positive and satisfyP (H0) + P (H1) = 1.
By Bayes’ theorem, theposterior probabilitiesof H0 andH1

with respect to datad are:

P (Hi|d) =
P (d|Hi)P (Hi)

P (d)
(i = 0, 1)

for everyd with P (d) > 0. In our caseP (d) is always non-
zero - there are no impossiblefinite sequences of data. The
hypothesis test method is based on the Bayes Factor, which is
the likelihood ratio of the sampled data with respect to the two
hypotheses. The Bayes FactorB of sampled and hypotheses
H0 andH1 is

B =
P (d|H0)

P (d|H1)
.

Therefore,B can be interpreted as a measure of evidence
(given by the datad) in favor of H0. Now, fix a threshold
T > 1. The algorithm iteratively draws independent and iden-
tically distributed (iid) sample tracesσ1, σ2, ..., and checks
whether they satisfyφ. After checking each trace, the algo-
rithm computes the Bayes FactorB to check if it has obtained
conclusive evidence. The algorithm acceptsH0 if B > T , and
rejectsH0 (acceptingH1) if B < 1

T
. Otherwise(1

T
6 B 6 T)

it continues drawing iid samples.
The Bayes factor ofH0:p > θ vs.H1:p < θ with Bernoulli

samples(x1, . . . , xn) and Beta prior of parametersα, β can be
computed in terms of the Beta distribution function as:

Bn =
P (H1)

P (H0)
·

(

1

F(x+α,n−x+β)(θ)
− 1

)

wherex =
∑n

i=1 xi is the number of successes in(x1, . . . , xn)
[2]. The Beta distribution function can be efficiently computed
by standard software packages, such as the GNU Scientific Li-
brary. Therefore, no numerical integration is required forthe
evaluation of the Bayes Factor.

Finally, it is most important to bound the error probability,
i.e., the probability that we reject (accept) the null hypothesis
although it is true (false).

Theorem. [2] The error probability for the Bayesian hypoth-
esis testing algorithm is bounded above by1

T
, whereT is the

Bayes Factor threshold given as input.

We note that the (vastly) dominant complexity factor in sta-
tistical model checking is due to system simulation. The com-
plexity of statistical computationsper seis not an issue.

B. Bayesian Interval Estimation.

In estimation one is interested in computing a value (an esti-
mate) which is, with high probability, close top, the true prob-
ability that the model satisfies a given property. The estimate
is usually in the form of a confidence interval - an interval in
[0, 1] which containsp with high probability. The estimation
method makes use of Bayes’ theorem for densities.

Proposition (Bayes Theorem for densities). Letx1, . . . , xn be
a sample drawn from a densityf(·|u), whereu is given by a
random variableU over (0, 1) with density isg. Then, the
posterior density ofU given the datax1, . . . , xn is:

q(u|x1, . . . , xn) =
f(x1, . . . , xn|u)g(u)

∫ 1

0
f(x1, . . . , xn|v)g(v) dv

(7)

Since we assume conditionally independent, identically dis-
tributed - iid - samples, the densityf(x1, . . . , xn|u) factorizes
as

∏n

i=1 f(xi|u), wheref(xi|u) is a Bernoulli mass function
as in (1).

For a prior distribution overp and sampled data, Bayes’ the-
orem gives theposteriordistribution ofp (i.e., the distribution
of p given the data sampled and chosen prior). This means
that one can estimatep with the mean of the posterior distribu-
tion. Furthermore, by integrating the posterior density over a

Fig. 1. (a) The two-stage OP amplifier; (b) The inverting configured amplifier

TABLE I
THE SET OF SPECIFICATIONS USED IN THE EXPERIMENT

Spec Name Value Simulation

1 Input Offset Voltage <1 mV Transient
2 Output Swing Range 0.2 V to 1.0 V Transient
3 Slew Rate >25 V/µSec Transient
4 Open-Loop Voltage Gain >8000 V/V AC
5 Loop-Gain Unit-gain Frequency>10 MHz AC
6 Phase Margin >60◦ AC

suitably chosen interval one can compute a Bayes interval es-
timate with any given confidence probability. Fix a confidence
probabilityc ∈ (1

2 , 1) and a half-interval widthδ ∈ (0, 1
2). The

algorithm iteratively draws iid traces, checks whether they sat-
isfy φ, and builds an interval of total width2δ, centered on the
posterior mean. If the posterior probability over such interval
is greater thanc the algorithm stops; otherwise, it continues
sampling. The algorithm thus returns an interval of length2δ

which containsp with probability at leastc. It also returns the
posterior mean as an estimate ofp.

Again, the posterior probability of an interval is straightfor-
wardly calculated by means of the Beta distribution function.
The posterior probability over the interval(t0, t1) can be com-
puted as [2]:

∫ t1

t0

q(u|x1, . . . , xn) du =

F(x+α,n−x+β)(t1) − F(x+α,n−x+β)(t0)

whereα andβ are the Beta prior parameters, andx =
∑n

i=1 xi

is the number of successes in the sample(x1, . . . , xn).

IV. SPICEMODEL

We study a gate-level SPICE model describing a two-stage
operational amplifier (op amp) as shown in Fig. 1(a). The op
amp is compensated in its bandwidth to ensure stability when
it is employed in an inverting amplifier system as shown in
Fig. 1(b). Finally, the op amp is designed to satisfy the speci-
fications shown in Table I with a CMOS 90nm technology.

In [1], the authors used a MATLAB Simulink model, while
in this work we prefer SPICE models, which are more com-
monly used throughout the analog design and validation pro-

cess. The SPICE simulator returns both transient and AC re-
sponses so that our BLTL trace checker can check the compli-
ance of the simulated traces to both transient and frequency-
domain properties. Note that different specifications are mea-
sured under different circuit configurations, different input sig-
nals and different kinds of simulations.

A. Transient Properties

The compliance of the model circuit to the specifications
given in Table I can be measured directly from the simula-
tion traces. Since BLTL formulae specify temporal proper-
ties over traces, we can translate the specifications into BLTL
formulae. For example, input offset voltage is defined as the
value of differential input that makes output equal to the DC
biasing voltage, which is 0.6 volts in this example. There-
fore, we can specify this property by the following formula:
G

[100µs]((Vout = 0.6) → (|Vin+ − Vin−| < 1mV)), where
100µs is the end time of transient simulation. This formula
states that “Within 100µs, it is always the case that when
Vout equals 0.6 volts, the difference betweenVin+ andVin−

is smaller than 1mV ”. However, the formula might be evalu-
ated as true whileVout never equals 0.6 volts within 100µs, or
there might not be a sample point whereVout is exactly equal
to 0.6 volts althoughVout did cross0.6 volts. Therefore, an-
other BLTL formula, “Within 100µs, Vout eventually equals
0.6 volts”, is added in conjunction to prune out the situation
whereVout never equals 0.6 volts. Also, we use linear interpo-
lation with an absolute tolerance of 1µV for equality testing to
capture crossing events. The resulting BLTL transient specifi-
cations are summarized in the upper half of Table II.

B. Frequency-Domain Properties

As opposed to introducing a frequency-domainpredicatepF

involving Fourier transformation and then statistically model
checkingPr≥θ(pF) as described in [1], we elaborate the no-
tion of frequency-domain predicates for more general analog
specifications by providing capability to specify properties on
AC small-signal responses. Since AC responses are waveforms
sampled at different input frequencies in a strictly increasing
manner just like time-stamps in transient responses, we sim-
ply substitute frequency-stamps for time-stamps to check fre-
quency domain properties using the same BLTL trace checker.
The BLTL specifications for frequency-domain properties are
summarized in the lower half of Table II. Note that the AC
response is complex-valued.Vmagand Vphaseare used to
represent the magnitude and phase of the AC response.

V. RESULTS

A. Experimental Setup

All our experiments have been performed on a Linux virtual
machine running on a Windows 7, 2.26GHz i3-350M, 4GB
RAM computer. The circuit simulator used was NGSPICE,
and the BLTL trace checker was written in C++.

TABLE II
THE SET OFBLTL FORMULAE USED TO SPECIFY PROPERTIES

Spec BLTL Formula for transient properties

1 F[100µs](Vout = 0.6)

∧G[100µs]((Vout = 0.6) → (|Vi+ − Vi−| < 0.001))

2 F[100µs](Vout < 0.2) ∧ F[100µs](Vout > 1.0)

3 G[100µs](((Vout = 1.0 ∧ Vin > 0.65) → F[0.008µs](Vout < 0.8))

∧(Vout = 0.2 ∧ Vin < 0.55) → F[0.008µs](Vout > 0.4))

Spec BLTL Formula for frequency-domain properties

4 G[1KHz](V magout > 8000)

5 G[10MHz](V magout > 1)

6 F[10GHz](V magout = 1)

∧G[10GHz]((V magout = 1) → (V phaseout > 60◦))

To model the process variation, threshold voltage and ox-
ide thickness, gate width and gate length of each MOSFET
are specified by normal random variables, so the circuit might
fail to satisfy specifications under certain values of parameters.
For example, a differential pair designed symmetrically should
have zero input offset voltage. However, process variationcan
induce mismatches between the differential pair so that theop
amp might have a non-zero offset voltage larger than specified.

B. Statistical Model Checking

For each experiment, the null hypothesis(H0), the property
we would like to check, is a formula in Table II with a proba-
bility thresholdθ. For example, consider Spec 4 andθ = 0.95,
we model check the following formula (null hypothesisH0) :

M |= Pr>0.95[G
[1KHz](Vmagout > 8000)] .

The probability thresholdθ should be set according to the
user’s needs. To achieve a good yield for the circuit after manu-
facturing,θ needs to be set close to one, so we chooseθ = 0.95
in the first place.

In the commonly used Monte Carlo simulation, the user
determines the number of samples, which reflects the testing
strength needed. The sample size is normally larger than 1000,
and it can grow up to tens of thousand to obtain results with
reasonable accuracy. In this experiment, the sample size is
chosen to be 1000. In Table III, we summarize the results of
the 1000-sample Monte Carlo simulation and Bayesian SMC
algorithm withθ = 0.95 and Bayes factor threshold T = 1000,
that is, the probability of error is bounded by 0.001. As seen
in the table, the measured means and variances of Spec 2, 3,
5 and 6 show that design margins are adequate, so very high
yields can be expected. In contrast to Spec 2, 3, 5, 6, the op
amp’s 3-sigma performance (mean±3×variance) does not sat-
isfy Spec 1 and 4. This suggests the need for stricter design
margins in Spec 1 and 4 for high yield, although Spec 4 satis-
fies the yield of 0.95. The SMC algorithm terminates in 303s
with largest sample size of 239 (less than one-fourth of the
Monte Carlo simulation), which is relatively good for such a
small error probability. With no surprise, circuit simulation

TABLE III
RESULTS OFMONTE CARLO AND SMC WITH UNIFORM PRIORS,

THRESHOLDθ = 0.95, T=1000,X: H0 ACCEPTED,×: H0 REJECTED

Monte Carlo (1000 samples) — Measured Value SMC
Specification Mean Stddev Yield Samples/Runtime

1 Offset Voltage (mV) .436 .597 .826 × 31/39s
2 Swing Range Min (V) .104 .006 1.00 X77/98s

Swing Range Max (V) 1.08 .005 1.00 X77/98s
3 Negative Slew Rate (V/µSec) -40.2 1.17 1.00 X77/98s

Positive Slew Rate (V/µSec) 56.4 2.54 1.00 X77/98s
4 Open-Loop Gain (V/V) 8768 448 .975 X239/303s
5 Loop-Gain UGF (MHz) 19.9 0.30 1.00 X77/98s
6 Phase Margin (◦) 64.1 0.44 1.00 X77/98s

TABLE IV
NUMBER OF SAMPLES/RUNTIME VS. PROBABILITY THRESHOLD FOR

SMC WITH UNIFORM PRIORS AND T=1000,X:H0 ACCEPTED, ×:H0

REJECTED

Probability Thresholdθ
Spec 0.7 0.8 0.9 0.99 0.999

1 X77/105s X9933/12161s× 201/275s× 10/13s × 7/9s
2 X16/18s X24/27s X44/51s X239/280s X693/813s
3 X16/23s X24/31s X44/57s X239/316s X693/916s
4 X23/26s X43/49s X98/114s × 1103/1309s× 50/57s
5 X16/18s X24/28s X44/51s X239/279s X693/807s
6 X16/20s X24/30s X44/55s X239/303s X693/882s

dominates the total runtime (277.9s, 91.7% of the total run-
time), while the BLTL trace checker took 24.6s, and the func-
tions for file format conversion and interpolating of crossing
events took 0.27s. We note that the time spent on computing
the statistical tests was only 0.32s.

Next, in Table IV we report the results of different proba-
bility thresholds. In most cases, SMC terminates very quickly
even with a probability threshold of 0.999. Higher numbers of
samples occur when the actual probability that the formula is
true is very close to the threshold. In our op amp example, the
probability of satisfying Spec 1 is close to 0.8, and this results
in a runtime of 12161s (9933 samples).

Finally, we use the Bayesian estimation algorithm with uni-
form priors to estimate the unknown probabilityp that the op
amp satisfies each specification. Two experiments were per-
formed with half-interval widthδ = 0.05 andδ = 0.01. For
eachδ, we used two values of the confidence probability. Ex-
perimental results are shown in Table V and VI.

TABLE V
POSTERIORMEAN/SAMPLES/RUNTIME VS. INTERVAL COVERAGE FOR

BAYESIAN ESTIMATION METHOD WITH UNIFORM PRIORS ANDδ=0.05

Interval Coverage
0.99 0.999

Spec Mean SamplesRuntime Mean SamplesRuntime

1 0.8082 410 530s 0.8195 652 858s
4 0.9591 96 122s 0.9685 125 164s
2,3,5,6 0.9777 43 55s 0.9850 65 84s

TABLE VI
POSTERIORMEAN/SAMPLES/RUNTIME VS. INTERVAL COVERAGE FOR

BAYESIAN ESTIMATION METHOD WITH UNIFORM PRIORS ANDδ=0.01

Interval Coverage
0.99 0.999

Spec Mean SamplesRuntime Mean SamplesRuntime

1 0.8114 10150 13605s 0.8124 16512 21685s
4 0.9660 2204 2860s 0.9685 3860 5098s
2,3,5,6 0.9956 227 296s 0.9970 341 439s

C. Discussion

The experimental results show that the Bayes estimation al-
gorithm is more efficient whenp is close to one but needs more
samples whenp is closer to 0.5. This is due to the fact that the
variance of a Bernoulli random variable is the largest when
p = 0.5.

The Bayesian SMC algorithm is faster when the threshold
probabilityθ differs significantly from the unknown probabil-
ity p, and it works better whenθ is close to one (or zero). Since
circuits are designed in order for manufactured chips to have
yields close to one, the threshold probabilityθ should be set
accordingly. Therefore, statistical model checking is likely to
work well for the problem of analog circuit verification.

VI. RELATED WORK

Verification of analog circuits is a very active research area
in which several different approaches have been proposed. A
popular approach is building finite-state abstractions andus-
ing reachability analysis techniques, such as [10, 11]. Sev-
eral works rely on abstracted models of analog circuits. In
[12], Little et al. used Labeled Hybrid Petri Nets (LHPN) as
an abstracted model to verify analog circuits. However, the
finite-state abstraction approach does not scale well with sys-
tem size, and cannot be easily integrated with circuit simula-
tors such as SPICE. Another approach uses a theorem prover to
prove design properties by means of inference rules. Recently,
Denmanet al.[13] used the MetiTarski theorem prover and ob-
tained reasonable results by tackling non-linearity with piece-
wise-linear models. However, the approaches above focus on
a given set of parameters with no process variation, which is
most troublesome to designers. In [14], Littleet al. took pro-
cess variation into account by generating LHPN models from
simulation traces. However, this approach is not fully au-
tomated because users must manually specify the thresholds
which are used to separate different operation phases of thecir-
cuit. In [15], stochastic differential equations (SDEs) are used
to specify circuits under variation and noise, but SDE-based
approaches still have difficulties in dealing with non-linearity.

VII. C ONCLUSION

In this paper, we have successfully applied the Bayesian
statistical model checking algorithm to analog circuit verifica-
tion by integrating the SPICE simulator, a BLTL trace checker,

Monte Carlo sampling, and statistical testing and estimation.
Also, we have demonstrated the feasibility of using BLTL
specifications for a simple analog circuit. Since BLTL is a very
expressive language which can specify complex interactions
between signals, we expect that our approach will be able to
verify circuits with more complicated specifications. Although
in statistical model checking a correct answer cannot be guar-
anteed, the error probability can be made arbitrarily smallby
the user. For more speedup, we are investigating the integra-
tion of our algorithm with online BLTL checking, which can
terminate simulation as soon as the property can be decided.

REFERENCES

[1] E. M. Clarke, A. Donzé, and A. Legay, “Statistical modelchecking of
mixed-analog circuits with an application to a third order delta-sigma
modulator,” inHaifa Verification Conference ’08, ser. LNCS, vol. 5394,
2009, pp. 149–163.

[2] P. Zuliani, A. Platzer, and E. M. Clarke, “Bayesian statistical model
checking with application to Stateflow/Simulink verification,” in HSCC,
2010, pp. 243–252.

[3] H. L. S. Younes and R. G. Simmons, “Statistical probabilistic model
checking with a focus on time-bounded properties,”Inf. Comput., vol.
204, no. 9, pp. 1368–1409, 2006.

[4] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet, “Approximate
probabilistic model checking,” inVMCAI, ser. LNCS, vol. 2937, 2004,
pp. 73–84.

[5] K. Sen, M. Viswanathan, and G. Agha, “Statistical model checking of
black-box probabilistic systems,” inCAV, ser. LNCS, vol. 3114, 2004,
pp. 202–215.

[6] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska,
and M. Ryan, “Symbolic model checking for probabilistic processes,”
in ICALP, ser. LNCS, vol. 1256, 1997, pp. 430–440.

[7] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen,“Model-
checking algorithms for continuous-time Markov chains,”IEEE Trans.
Software Eng., vol. 29, no. 6, pp. 524–541, 2003.

[8] A. Pnueli, “The temporal logic of programs,” inFOCS. IEEE, 1977,
pp. 46–57.

[9] R. Grosu and S. Smolka, “Monte Carlo Model Checking,” inTACAS,
ser. LNCS, vol. 3440, 2005, pp. 271–286.

[10] A. Chutinan and B. H. Krogh, “Verification of polyhedral-invariant hy-
brid automata using polygonal flow pipe approximations,” inHSCC,
1999, pp. 76–90.

[11] S. Gupta, B. H. Krogh, and R. A. Rutenbar, “Towards formal verifica-
tion of analog designs,” inICCAD, 2004, pp. 210–217.

[12] S. Little, N. Seegmiller, D. Walter, C. J. Myers, and T. Yoneda, “Verifi-
cation of analog/mixed-signal circuits using labeled hybrid petri nets,”
in ICCAD, 2006, pp. 275–282.

[13] W. Denman, B. Akbarpour, S. Tahar, M. H. Zaki, and L. C. Paulson,
“Formal verification of analog designs using metitarski,” in FMCAD,
2009, pp. 93–100.

[14] S. Little, D. Walter, K. Jones, and C. J. Myers, “Analog/mixed-signal
circuit verification using models generated from simulation traces,” in
ATVA, 2007, pp. 114–128.

[15] R. Narayanan, B. Akbarpour, M. H. Zaki, S. Tahar, and L. C. Paulson,
“Formal verification of analog circuits in the presence of noise and pro-
cess variation,” inDATE, 2010, pp. 1309–1312.

