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Abstract. We present a new, efficient algorithm for inferring, from time-
series data or high-throughput data (e.g., flow cytometry), stochastic
rate parameters for chemical reaction network models. Our algorithm
combines the Gillespie stochastic simulation algorithm (including ap-
proximate variants such as tau-leaping) with the cross-entropy method.
Also, it can work with incomplete datasets missing some model species,
and with multiple datasets originating from experiment repetitions. We
evaluate our algorithm on a number of challenging case studies, including
bistable systems (Schlögl’s and toggle switch) and experimental data.

1 Introduction

In this paper we are concerned with the inference of biochemical reaction stochas-
tic rate parameters from data. Reactions are discrete events that can occur ran-
domly at any time with a rate dependent on the chemical kinetics [40]. It has
recently become clear that stochasticity can produce dynamics profoundly dif-
ferent from the corresponding deterministic models. This is the case, e.g., in
genetic systems where key species are present in small numbers or where key
reactions occur at a low rate [23], resulting in transient, stochastic bursts of ac-
tivity [4, 24]. The standard model for such systems is the Markov jump process
popularised by Gillespie [13, 14]. Given a collection of reactions modelling a bio-
logical system and time-course data, the stochastic parameter inference problem
is to find parameter values for which the Gillespie model’s temporal behaviour
is most consistent with the data. This is a very difficult problem, much harder,
both theoretically and computationally, than the corresponding problem for de-
terministic kinetics — see, e.g., [41, Section 1.3]. One simple reason is because
stochastic models can behave widely differently from the same initial conditions.
(The related issue of parameter non-identifiability is outside the scope of this
paper, but the interested reader can find more in, e.g., [37, 38] and references
therein.) Additionally, experimental data is usually sparse and most often in-
volves only a limited subset of a model’s species; and the system under study
might exhibit multimodal behaviour. Also, data might not directly relate to
a species, it might be measured in arbitrary units (e.g., fluorescence measure-
ments), thus requiring the estimation of scaling factors, or it might be described
by frequency distributions (e.g., high-throughput data such as flow cytometry).
Stochastic parameter inference is thus a fundamental and challenging problem in
systems biology, and it is crucial for obtaining validated and predictive models.



In this paper we propose an approach for the parameter inference problem
that combines Gillespie’s Stochastic Simulation Algorithm (SSA) with the cross-
entropy (CE) method [27]. The CE method has been successfully used in opti-
misation, rare–event probability estimation, and other domains [29]. For param-
eter inference, Daigle et al. [8] combined a stochastic Expectation–Maximisation
(EM) algorithm with a modified cross-entropy method. We instead develop the
cross-entropy method in its own right, discarding the costly EM algorithm steps.
We also show that our approach can utilise approximate, faster SSA variants such
as tau-leaping [15]. Summarising, the main contributions of this paper are:

– we present a new, cross entropy-based algorithm for the stochastic parameter
inference problem that outperforms previous, state–of–the–art approaches;

– our algorithm can work with multiple, incomplete, and distribution datasets;
– we show that tau-leaping can be used within our technique;
– we provide a thorough evaluation of our algorithm on a number of challenging

case studies, including bistable systems (Schlögl model and toggle switch)
and experimental data.

2 Background

Notation Given a system with n chemical species, the state of the system at
time t is represented by the vector x(t) = (x1(t), . . . , xn(t)), where xi represents
the number of molecules of the ith species, Si, for i ∈ {1, . . . , n}. A well-mixed
system within a fixed volume at a constant temperature can be modelled by
a continuous-time Markov chain (CTMC) [13, 14]. The CTMC state changes
are triggered by the (probabilistic) occurrences of chemical reactions. Given m
chemical reactions, let Rj denote the jth reaction of type:

Rj : ν−j,1S1 + . . .+ ν−j,nSn
θj→ ν+j,1S1 + . . .+ ν+j,nSn,

where the vectors ν−j and ν+
j represent the stoichiometries of the underlying

chemical kinetics for the reactants and products, respectively. Let νj ∈ Zn de-
note the overall (non-zero) state-change vector for the jth reaction type, specif-
ically νj = ν+

j − ν
−
j , for j ∈ {1, . . . ,m}. Assuming mass action kinetics (and

omitting time dependency for x(t)), the reaction Rj leads to the propensity [41]:

hj(x,θ) = θjαj(x) = θj

n∏
i=1

(
xi
ν−j,i

)
, (1)

where θ = (θ1, . . . , θm)ᵀ is the vector of rate constants. In general, θ is unknown
and must be estimated from experimental data — that is the aim of our work.
Our algorithm can work with propensity functions factorisable as in (1), but it is
not restricted to mass action kinetics (i.e., the functions αj ’s can be arbitrary).

Cross-Entropy Method For Optimisation The Kullback-Leibler divergence
[20] or cross-entropy (CE) between two probability densities g and h is:

D(g, h) = Eg
[
ln
g(X)

h(X)

]
=

∫
g(x) ln

g(x)

h(x)
dx



where X is a random variable with density g, and Eg is expectation w.r.t. g.
Note that D(g, h) ≥ 0 with equality iff g = h (almost everywhere). (However,
D(g, h) 6= D(h, g).) The CE has been successfully adopted for a wide range of
hard problems, including rare event simulation for biological systems [7], discrete,
and continuous optimisation [29, 28]. Consider the minimisation of an objective
function J over a space χ (assuming such minimum exists), γ∗ = min

x∈χ
J(x). The

CE method performs a Monte Carlo search over a parametric family of densities
{f(·;v),v ∈ V} on χ that contains as a limit the (degenerate) Dirac density that
puts its entire mass on a value x∗ ∈ χ such that J(x∗) = γ∗ — the so called
optimal density. The key idea is to use the CE to measure how far a candidate
density is from the optimal density. In particular, the method solves a sequence
of optimisation problems of the type below for different values of γ by minimising
the CE between a putative optimal density g∗(x) ∝ I{J(x)≤γ}f(x,v∗) for some
v∗ ∈ V, and the density family {f(·;v),v ∈ V}

min
v∈V
D(g∗, f(·;v)) = max

v∈V
Eu
[
I{J(X)≤γ} ln f(X;v)

]
(2)

where I is the indicator function and X has density f(·;u) for u ∈ V. The
definition of density g∗ above essentially means that, for a given γ, we only
consider densities that are positive only for arguments x for which J(x) 6 γ.
The generic CE method involves a 2-step procedure which alternates solving (2)
for a candidate g∗ with adaptively updating γ. In practice, problem (2) is solved
approximately via a Monte Carlo adaptation, i.e., by taking sample averages
as estimators for Eu. The output of the CE method is a sequence of putative
optimal densities identified by their parameters v̂0, v̂1, . . . , v̂

∗, and performance
scores γ̂0, γ̂1, . . . , γ̂

∗, which improve with probability 1. For our problem, a key
benefit of the CE method is that an analytic solution for (2) can be found when
{f(·;v),v ∈ V} is the exponential family of distributions. (More details in [29].)

Cross-Entropy Method for the SSA We denote by rj the number of firings
of the jth reaction channel, τi the time between the ith and (i− 1)th reaction,
and τr+1 the final time interval at the end of the simulation in which no reaction
occurs. It can be shown that an exact SSA trajectory z = (x0, . . . ,xr), where r
is the total number of reaction events r =

∑m
j=1 rj , belongs to the exponential

family of distributions [41] — whose optimal CE parameter can be found ana-
lytically. Daigle et al. [8] showed that the solution of (2) for the SSA likelihood
yields the following Monte Carlo estimate of the optimal CE parameter v∗j ,

θ̂j = v̂∗j =

∑K
k=1 rjkI{J(zk)≤γ}∑K

k=1 I{J(zk)≤γ}

(∑rk+1
i=1 αj(xi−1,k)τik

) (3)

where K is the number of SSA trajectories of the Monte Carlo approximation of
(2), zk is the kth trajectory, rjk and τik are as before but w.r.t. the kth trajectory,
xi,k denotes the state after the (i− 1)th reaction in the kth trajectory, and the
fraction is defined only when the denominator is nonzero (i.e., there is at least
one trajectory zk for which J(zk) ≤ γ — so-called elite samples). Note for γ = 0,
the CE estimator (3) coincides with the maximum likelihood estimator (MLE)



for θj over the same trajectory. Following [7] and [26, Section 5.3.4], it is easy
to show that a Monte Carlo estimator of the covariance matrix of the optimal
parameter estimators (3) is given (written in operator style) by the matrix:

Σ̂−1 =

[
− 1

KE

∑
k∈E

∂2

∂θ2
− 1

KE

∑
k∈E

∂

∂θ
· ∂
∂θ

T

+
1

K2
E

(∑
k∈E

∂

∂θ

)
·
(∑
k∈E

∂

∂θ

)T]
(log f(θ|x, zk)) (4)

where E is the set of elite samples, KE = |E|, the operator ∂2

∂θ2 returns a m×m
matrix, ∂

∂θ returns an m-dimensional vector (m×1 matrix), and ∂
∂θ

T
denotes

matrix transpose. From Eq. (4) parameter variance estimates can be readily de-
rived. However, a more numerically stable option is to approximate the variance
of the jth parameter estimator using the sample variance

σ̂2
j =

1

KE

∑
k∈E

(
rjk∑rk+1

i=1 αj(xi−1,k)τik
− θ̂j

)2

. (5)

3 Methods

In this section, we present our stochastic rate parameter inference with cross-
entropy (SPICE) algorithm.

Overview To efficiently sample the parameter space, we treat each stochastic
rate parameter as being log-normally distributed, i.e., θj ∼ Lognormal(ωj , var(ωj)),
where ωj = log(θj) is the log-transformed parameter calculated analagously to
(3) and (4), respectively. For the initial iteration, we sample the parameter vector

θ from the (log-transformed) desired parameter search space [θ
(0)
min,θ

(0)
max] using

a Sobol low-discrepancy sequence [33] to ensure adequate coverage. Subsequent
iterations then generate a sequence of distribution parameters {(γn,θn,Σn)}
which aim to converge to the optimal parameters as follows:

1. Updating of γn: Generate K sample trajectories using the SSA, z1, . . . ,zK ,
from the model f(·;θ(n−1)) with θ(n−1) sampled from the lognormal distri-
bution, and sort them in order of their performances J1′ ≤ · · · ≤ JK′ (see
Eqs. (7) and (6) for the actual definition of the performance, or score, func-
tion we adopt). For a fixed small ρ, say ρ = 10−2, let γ̂n be defined as the
ρth quantile of J(z), i.e., γ̂n = J(dρKe).

2. Updating of θn: Using the estimated level γ̂n, use the same K sample
trajectories z1, . . . ,zK to derive θ̂n and σ̂2

n from the solution of Eqs. (3) and
(4). In case of numerical issues (or undersampling) in our implementation
we switch to (5) for updating the variance.

The SPICE algorithm’s pseudocode is shown in Algorithm 1. This 2-step ap-
proach provides a simple iterative scheme which converges asymptotically to the
optimal density. A reasonable termination criteria to take would be to stop if
γ̂n � γ̂n−1 � . . . for a fixed number of iterations. In general, more samples are
required as the mean and variance of the estimates approach their optima.



Adaptive Sampling We adaptively update the number of samples Kn taken at
each iteration. The reasoning is to ensure the parameter estimates improve with
statistical significance at each step. Thus, our method allows the algorithm to
make faster evaluations early on in the iterative process, and concentrate simu-
lation time on later iterations, where it becomes increasingly hard to distinguish
significant improvements of the estimated parameters. We update our param-
eters based on a fixed number of elite samples, KE , satisfying J(z) ≤ γ. The
performance of the ‘best’ elite sample is denoted J∗n, while the performance of
the ‘worst’ elite sample — previously given by the ρth quantile of J(z) — is γ̂n.
The quantile parameter ρ is adaptively updated each iteration as ρn = KE/Kn,
where KE is typically taken to be 1–10% of the base number of samples K0. At
each iteration, a check is made for improvement in either of the best or worst
performing elite samples, i.e., if, J∗n < J∗n−1 or γ̂n < γ̂n−1, then we can update
our parameters and proceed to the next iteration. If no improvement in either
values are found, the number of samples Kn in the current iteration is increased
in increments, up to a maximum Kmax. If we hit the maximum number of sam-
ples Kmax for c iterations (e.g., c = 3), then this suggests no further significant
improvement can be made given the restriction on the number of samples.

Objective Function The SPICE algorithm has been developed to handle an
arbitrary number of datasets. Given N time series datasets, SPICE associates
N objective function scores with each simulated trajectory. Each objective value
corresponds to the standard sum of L2 distances of the trajectory across all time
points in the respective dataset:

Jn(z) =

T∑
t=1

(yn,t − xt)2 1 ≤ n ≤ N (6)

where xt = x(t) and yn,t is the datapoint at time t in the nth dataset. To
ensure adequate coverage of the data, we choose our elite samples to be the best
performing quantile of trajectories for each individual dataset (with scores Jn).

In the absence of temporal correlation within the data (e.g., when measure-
ments between time points are independent or individual cells cannot be tracked
as in flow cytometry data), we instead construct an empirical Gaussian mixture
model for each time point within the data. Each mixture model at time t is
comprised of N multivariate normal distributions, each with a vector of mean
values yn,t corresponding to the observed species in the nth dataset, and diago-
nal covariance matrix σ2

n corresponding to an error estimate or variance of the
measurements on the species. In our experiments we used a 10% standard devia-
tion, as we did not have any information about measurement noise. We then take
the objective score function to be proportional to the negative log-likelihood of
the simulated trajectory w.r.t. the data:

Jn(z) = −
T∑
t=1

ln

(
N∑
n=1

exp

[
−1

2
(yn,t − xt)ᵀσ−2n (yn,t − xt)

])
. (7)



Smoothed Updates We implement the parameter smoothing update formula

θ̂
(n)

= λθ̃
(n)

+ (1− λ)θ̂
(n−1)

, σ̂(n) = βnσ̃
(n) + (1− βn)σ̂(n−1)

where βn = β − β
(
1− 1

n

)q
, λ∈(0, 1], q∈N+ and β∈(0, 1) are smoothing con-

stants, and θ̃, σ̃ are outputs from the solution of the cross-entropy in equation
(2), approximated by (3) and (4), respectively. Parameter smoothing between
iterations has three important benefits: (i) the parameter estimates converge to
a more stable value, (ii) it reduces the probability of a parameter value tending
towards zero within the first few iterations, and (iii) it prevents the sampling dis-
tribution from converging too quickly to a degenerate point probability mass at
a local minima. Furthermore, [6] provide a proof that the CE method converges
to an optimal solution with probability 1 in the case of smoothed updates.

Multiple Shooting and Particle Splitting SPICE can optionally utilise
these two techniques for trajectory simulation between time intervals. For mul-
tiple shooting we construct a sample trajectory comprised of T intervals match-
ing the time stamps within the data y. Originally [42], each segment from xt−1
to xt was simulated using an ODE model with the initial conditions set to the
previous time point of the dataset, i.e., xt−1 = yt−1. We instead treat the data
as being mixture-normally distributed, thus we sample our initial conditions
xt−1 ∼ N (yn,t−1,σ

2
n,t−1), where the index of the time series n is first uniformly

sampled. Using the SSA, each piecewise section of a trajectory belonging to sam-
ple k is then simulated with the same parameter vector θ. For particle splitting
we adopt a multilevel splitting approach as in [8], and the objective function is
calculated after the simulation of each segment from xt−1 to xt. The trajectories
zk satisfying J(zk) ≤ γ̂ are then re-sampled with replacement Kn times before
simulation continues (recall Kn is the number of samples in the nth iteration).
This process aims at discarding poorly performing trajectories in favour of those
‘closest’ to the data. This will in turn create an enriched sample, at the cost of
introducing an aspect of bias propagation.

Hyperparameters SPICE allows for the inclusion of hyperparameters φ (e.g.,
scaling constants, and non kinetic-rate parameters), which are sampled (loga-
rithmically) alongside θ. These hyperparameters are updated at each iteration
via the standard CE method.

Tau-Leaping With inexact, faster methods such as tau-leaping [15] a degree
of accuracy is traded off in favour of computational performance. Thus, we are
interested in replacing the SSA with tau-leaping in our SPICE algorithm. The
next Proposition shows that with a tau-leaping trajectory we get the same form
for the optimal CE estimator as in (3).

Proposition 1. The CE solution for the optimal rate parameter over a tau-
leaping trajectory is the same as that for a standard SSA trajectory.



Proof. We shall use the same notation of Section 2 and further assume a trajec-
tory in which state changes occur at times tl, for l∈{0, 1, . . . , L}. For each given
time interval of size τl of the tau-leaping algorithm, kjl ∈ Z+ firings of each reac-
tion channelRj are sampled from a Poisson process with mean λjl = θjαj(xtl)τl.
Thus, the probability of firing kjl reactions, in the interval [tl, tl + τl), given the
initial state xtl is P (kjl|xtl , λjl) = exp{−λjl}(λjl)kjl/kjl!, where P (0|xtl , 0) = 1.
Therefore, the combined probability across all reaction channels is:

m∏
j=1

P (kjl|xtl , λjl) =

m∏
j=1

exp{−λjl}(λjl)kjl
kjl!

.

Extending for the entire trajectory, the complete likelihood is given by:

L =

L∏
l=0

m∏
j=1

P (kjl|xtl , λjl) =

L∏
l=0

m∏
j=1

exp{−λjl}(λjl)kjl
kjl!

.

We can conveniently factorise the likelihood into component likelihoods associ-
ated with each reaction channel as L =

∏m
j=1 Lj , where each component Lj is

given by Lj =
∏L
l=0

exp{−λjl}(λjl)
kjl

kjl!
. Expanding λjl:

Lj =

L∏
l=0

exp{−θjαj(xtl)τl}(θjαj(xtl)τl)kjl
kjl!

= θ
rj
j exp

{
−θj

L∑
l=0

αj(xtl)τl

}
L∏
l=0

(αj(xtl)τl)
kjl

kjl!
,

where rj =
∑L
l=0 kjl, i.e., the total number of firings of reaction channel Rj .

From [29], the solution to (2) can be found by solving:

Eu
[
I{J(X)≥γ}∇ lnLj

]
= 0,

given that the differentiation and expectation operators can be interchanged.
Expanding lnLj and simplifying, we get:

Eu

[
I{J(X)≥γ}∇

(
ln θ

rj
j − θj

L∑
l=0

αj(xtl)τl + ln

{
L∏
l=0

(αj(xtl)τl)
kjl

kjl!

})]
= 0.

We can then take the derivative, ∇, with respect to θj ,

Eu

[
I{J(X)≥γ}

(
rj
θj
−

L∑
l=0

αj(xtl)τl

)]
= 0.

It is simple to see that the previous entity holds when rj/θj =
∑L
l=0 αj(xtl)τl,

yielding the Monte Carlo estimate,

θ̂j =

∑K
k=1 I{J(zk)≤γ}rjk∑K

k=1 I{J(zk)≤γ}
∑L
l=0 αj(xtl,k)τl,k

.

ut



Algorithm 1: SPICE — Stochastic Rate Parameter Inference with
Cross-Entropy

input : Datasets represented by mixture models Φi at times ti for 0 6 i 6 L,

initial parameter bounds (log-transformed)
[
θ
(0)
min,θ

(0)
max

]
, quantile ρ.

output: Estimate of parameters θ̂(n), and their variances Σ̂(n).

1 Iteration n← 1

2 Generate Sobol sequence S ←
[
θ̂
(0)
min, θ̂

(0)
max

]
hypercube

3 Initial sample size K1 ← Kmin

4 Initialise γ1 ←∞
5 repeat
6 for i← 1 to L do
7 Set initial time point t0 ← ti−1

8 for k ← 1 to Kn do
9 if i = 1 then

10 Set initial state x← y0

11 if n = 1 then
12 Sample parameters from Sobol sequence θk ← S(k)
13 else
14 Sample parameters from the parameter distribution

θk ∼ Lognormal
(
θ̂(n−1), Σ̂(n−1)

)
15 else
16 if Method = Multiple Shooting then
17 Sample the starting state from the distribution of the data

x ∼ Φi

18 else
19 Continue from the end state of the current simulation

x← zi−1,k

20 Forward simulate zi,k ←SSA(x, t0, ti,θk)
21 if (Method = Splitting) or (i = L) then

// depending on type of data, use (6) or (7)
22 Calculate the cost function dk ← J(zk)

23 if Method = Splitting then
24 Sample with replacement weighted trajectories satisfying dk < γn

25 γn ← ρth quantile of (d1, . . . , dKn)

26 Compute θ̂(n) and σ̂(n) by means of Eqs. (3) and (4) (or (5)), using the
elite trajectories satisfying dk < γn (and taking log appropriately in (3)
and (4) )

27 Increment n← n+ 1
28 Adaptively update Kn

29 until convergence detected in {γ1, . . . , γn−1}



4 Experiments

We utilise our SPICE algorithm on four commonly investigated systems: (i) the
Lotka-Volterra predator–prey model, (ii) a Yeast Polarization model, (iii) the
bistable Schlögl system, and (iv) the Genetic Toggle Switch. We present results
for each system obtained using both the standard SSA and optimised tau-leaping
(with an error control parameter of ε = 0.1) to drive our simulations.

For each run of the algorithm we set the sample parameters KE = 10, Kmin =
1, 000, Kmax = 20, 000, and set an upper limit on the number of iterations to
250. The smoothing parameters (λ, β, q) were set to (0.7, 0.8, 5) respectively. For
our analysis, we define the mean relative error (MRE) between a parameter esti-

mate θ̂ and the truth θ∗ as MRE(%ERR) = M−1
∑M
j |θ̂j − θ∗j |/θ∗j × 100. All our

experiments were performed on a Intel Xeon 2.9GHz Linux system without using
multiple cores — all reported CPU times are single-core. SPICE has been imple-
mented in Julia and is open source (https://github.com/pzuliani/SPICE).

For models (i)–(iii), we use synthetic data where the true solution is known,
and compare the results of SPICE against some commonly used parameter esti-
mation techniques implemented in COPASI 4.16 [17]. Specifically, we check the
performance of SPICE against the genetic algorithm (GA), evolution strategy
(ES), evolutionary programming (EP), and particle swarm (PS) implementa-
tions. For the ES and EP algorithms we allow 250 generations with a population
of 1,000 particles. For the GA, we run 500 generations with 2,000 particles.
For the PS, we allow 1,000 iterations with 1,000 particles1. For model (iv), the
Genetic Toggle Switch, we show results for SPICE using real experimental data.

All statistics presented are based on 100 runs of each algorithm using fixed
datasets. For each approach we also compared the performance of using the stan-
dard SSA versus tau-leaping, alongside multiple-shooting and particle splitting
approaches. However, for the models tested, neither multiple shooting nor parti-
cle splitting helped in reducing CPU times or improving the estimates accuracy.

Lotka-Volterra Predator–Prey Model We implement the standard Lotka-
Volterra model below with real parameters (θ1, θ2, θ3) = (0.5, 0.0025, 0.3), and
initial population (X1, X2) = (50, 50)

X1
θ1−→ X1 +X1 X1 +X2

θ2−→ X2 +X2 X2
θ3−→ ∅

We artificially generated 5 datasets each consisting of 40 timepoints using Gille-
spie’s SSA, and performed parameter estimation based on these datasets. For
the initial iteration, we placed bounds on the Sobol sequence parameter search
space of θj∈[1e−6, 10], for j = 1, 2, 3. The minimum, maximum, and average
MRE between the true parameters and their estimates across all 100 runs of
each algorithm (using the standard SSA) are summarised in Table 1, together
with corresponding CPU run times. Box plots summarising the obtained param-
eter estimates across all runs of each method are displayed in Fig. 1.

1NB: we also tested the COPASI implementations using greater populations and
more iterations (not shown), but found little improvement for the significant increase
in computational cost.
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Fig. 1. Lotka-Volterra Model: box plots showing the summary statistics across 100
runs of COPASI and SPICE for each of the 3 parameter estimates. We note SPICE
consistently has the least variance.

In the previous Lotka-Volterra predator–prey example, SPICE was provided
with the complete data for both species X1, X2. However, we are also concerned
with cases where the data is not fully observed, i.e., when we have latent species.
To compare the effects of latent species on the quality of parameter estimates, we
ran SPICE again (averaging across 100 runs), this time supplying information
about species X1 alone. The results are presented in Table 1.

Yeast Polarization Model We implement the Yeast Polarization model (see
below) with real parameters (θ1, . . . , θ8) = (0.38, 0.04, 0.082, 0.12, 0.021, 0.1,
0.005, 13.21), and initial population (R,L,RL,G,Ga, Gbg, Gd) = (500, 4, 110,
300, 2, 20, 90). The reactions of the model are [8]:

∅ θ1−→ R RL+G
θ5−→ Ga +Gbg

R
θ2−→ ∅ Ga

θ6−→ Gd
L+R

θ3−→ RL+ L Gd +Gbg
θ7−→ G

RL
θ4−→ R ∅ θ8−→ RL

We artificially generated 5 datasets each consisting of 17 timepoints using Gille-
spie’s SSA, and performed parameter estimation based on these datasets. For the
initial iteration, we placed bounds on the parameter search space of θj∈[1e−6, 10]
for 1 6 j 6 7, and θ8∈[1e−6, 100]. The average relative errors between the esti-
mated and the real parameters across 100 runs of the algorithm are summarised
in Table 1, along with the corresponding CPU run times. The variability of the
estimates obtained using SPICE (and other methods) are shown in Fig 2.

Schlögl System We use the Schlögl model [30] with parameters (θ1, θ2, θ3, θ4) =
(3e−7, 1e−4, 1e−3, 3.5), and initial population (X,A,B) = (250, 1e5, 2e5). This
model is well known to produce bistable dynamics (see Fig. 4).

2X +A
θ1−→ 3X B

θ3−→ X

3X
θ2−→ 2X +A X

θ4−→ B
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Fig. 2. Yeast Polarization parameter estimates: box plots showing the summary statis-
tics of all 8 parameter estimates across 100 runs of COPASI’s methods and SPICE.
We note once again SPICE produces the least variation of obtained estimates.

We artificially generated 10 datasets (in order to partially capture a degree of
the bistable dynamics) each consisting of 100 timepoints, and performed pa-
rameter estimation based on these datasets (also see Fig. 4). For the initial
iteration, we placed bounds on the parameter search space of θ1∈[1e−9, 1e−5],
θ2∈[1e−6, 0.01], θ3∈[1e−5, 10], θ4∈[0.01, 100]. Unlike the previous models, we ex-
plicitly ran the Schlögl System using tau-leaping for all algorithms, due to the
computation time being largely infeasible under the same conditions (4.5 hours
in SPICE, 48+ hours in COPASI). The MRE of all the estimated parameters, to-
gether with CPU times for each algorithm are summarised in Table 1. Box plots
of the SPICE algorithm’s performance are presented in Fig. 3. Note that the
Schlögl system is sensitive to the initial conditions, so even slight perturbations
of its parameters can cause the system to fail in producing bimodality.
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Fig. 3. Schlögl System parameter estimates: box plots comparing the parameter es-
timates across 100 runs of COPASI’s methods and SPICE (all simulated using tau-
leaping, ε = 0.1). Again, SPICE shows the smallest variance, with mean estimates
quite close to the real values of θ1 and θ3. For θ2 and θ4, all the best mean estimates
have variance much larger than SPICE estimates.

Toggle Switch Model The genetic toggle switch is a well studied bistable
system, with particular importance toward synthetic biology. The toggle switch
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Fig. 4. Schlögl: From the left: Solid black lines: the 10 datasets generated using the SSA
direct method and the real parameters, and used as input for SPICE. Blue lines: 100
model runs with estimated parameters sampled by the final parameter distributions ob-
tained by SPICE with the direct method (means = (2.14e−7, 7.63e−5, 4.54e−4, 2.18));
variances = (7.81e−16, 2.81e−10, 4.05e−8, 0.13)). Fitted: empirical distribution of
1,000 model simulations with sampled parameters from SPICE output. Real distri-
bution: empirical distribution of 1,000 model simulations with the real parameters.

is comprised of two repressors, and two promoters, often mediated in practice
through IPTG2 and aTc3 induction. We perform parameter inference based on
real high-throughput data (see Fig. 5), implemented upon a simple model (see
below) based on [12]. For our model, we define the following reaction propensities:

h1 = θ1 ×GFP h3 = θ3 ×mCherry

h2 =
θ2 × φ1

1 + φ1 + φ2 ×mCherry2 h4 =
θ4 × φ3

1 + φ3 + φ4 ×GFP2

where GFP and mCherry are the two model species (reporter molecules), and
the stochastic rate parameters are (θ1, . . . , θ4). The data used for parameter
inference was obtained through fluorescent flow cytometry in [21], via the GFP
and mCherry reporters, and consists 40,731 measurements across 7 timepoints
over 6 hours. We look specifically at the case where the switch starts in the
low-GFP (high mCherry) state, and switches to the high-GFP (low-mCherry)
state over the time course after aTc induction to the cells. The inclusion of
real, noisy data requires a degree of additional care as the data needs to be
rescaled from arbitrary units (a.u.) to discrete molecular counts. We assume a
linear (multiplicative) scale, e.g., such that GFP (a.u.) = φ5×GFP molecules.
Furthermore, we can no longer assume all the cells begin at the same state, and
we must assume the initial state belongs to a distribution. This introduces extra
so-called ‘hyperparameters’, specifically the GFP molecule count to fluorescent
(a.u.) scale factor φ5, and the respective mCherry scale factor φ6. In addition,

2Isopropyl β-D-1-thiogalactopyranoside
3anhydrotetracycline



the model now contains 4 additional parameters, φ1, . . . , φ4, which in turn are
required to be estimated. Each hyperparameter is initially sampled as before
using the low-discrepancy Sobol sequence, and updated using the means and
variances of the generated elite samples as per the CE method.

The placed bounds on the initial kinetic parameter search space, based
upon reported half-lives for the variants of GFP [2] and mCherry [31], were
θ1,3∈[1e−3, 1], and θ2,4∈[1, 50]. The respective bounds on the search space for
the hyperparameters were φ1,2,3,4∈[1e−3, 10], and φ5,6∈[50, 500]. To generate the
parameter estimates, we used SPICE with tau-leaping (ε = 0.1, CPU time =
4,293s). The estimated parameters and the resulting fit against the data for the
model can be seen in Fig. 5.
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Est. Rate Param. θ̂1 θ̂2 θ̂3 θ̂4
mean-log 0.46 4.22 0.44 3.16

var-log 0.081 0.077 0.0027 0.19

Est. Hyperparam. φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6

mean-log 16.5 -5.42 7.72 -2.74 6.04 4.48
var-log 2.81 1.60 1.84 0.77 0.042 0.10

Num. datapoints 0.5hr 1hr 2hr 3hr 4hr 5hr 6hr
7,018 4,246 8,488 5,296 5,183 2,974 7,553

Total dataset = 40,731 points
CPU time = 4,293s

Fig. 5. Toggle Switch Model: Blue circles: the experimental data with the log10(GFP)
fluorescence plotted against the log10(mCherry) fluorescence, across all timepoints up
to 6hr. Orange circles: 1,000 model simulations using the direct method, with parame-
ters sampled from the final distribution obtained by SPICE using tau-leaping (ε = 0.1).



Table 1. The relative errors for each stochastic rate parameter averaged across 100
runs using COPASI’s Evolutionary Programming (EP), Evolution Strategy (ES), Ge-
netic Algorithm (GA), and Particle Swarm (PS) algorithms, and our SPICE algorithm
are shown. The minimum, maximum, and average mean relative error (MRE) for all
parameter estimates across all runs are also given alongside the averaged CPU time.

Lotka-Volterra Model
Alg. θ1 θ2 θ3 Min. MRE Av. MRE Max. MRE Av. CPU

(%ERR) (%ERR) (%ERR) (%ERR) (s)

EP 38.4 3.5 29.6 0.4 23.8 156.5 1200
ES 3.8 0.6 4.4 0.3 3.0 9.0 5763
GA 5.2 0.8 5.7 0.8 3.9 15.2 3640
PS 25.6 2.2 18.6 0.1 15.5 126.6 2689

SPICE 3.6 0.4 0.4 1.0 1.5 2.1 1025

Lotka-Volterra Latent-Species Model

SPICE 9.4 0.41 6.4 4.1 5.4 6.8 1589

Yeast Polarization Model

Alg. θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 Min. MRE Av. MRE Max. MRE Av. CPU
(%ERR) (%ERR) (%ERR) (%ERR) (s)

EP 662.9 138.4 1.7 235.4 1.7 25.3 3.4 357.0 56.2 178.2 316.9 405
ES 109.8 18.5 1.2 35.4 1.3 3.3 1.5 27.9 3.6 24.9 62.8 1650
GA 564.0 120.2 1.3 275.3 1.6 6.5 2.6 312.4 38.8 160.5 299.4 2696
PS 156.4 29.0 1.4 52.6 0.9 3.7 1.6 48.6 7.3 36.8 173.6 1755

SPICE 221.2 21.7 2.5 34.9 0.9 1.7 1.1 62.7 27.6 43.3 54.4 1116

Schlögl System Model

Alg. θ1 θ2 θ3 θ4 Min. MRE Av. MRE Max. MRE Av. CPU
(%ERR) (%ERR) (%ERR) (%ERR) (s)

EP 12.2 9.7 15.1 142.9 24.4 45.0 60.5 307
ES 3.3 15.5 19.0 40.3 11.5 19.3 31.7 1505
GA 13.7 11.0 14.0 159.7 32.2 49.6 66.3 987
PS 12.0 8.5 11.4 141.4 18.7 43.3 60.0 1095

SPICE 4.6 14.6 6.3 73.0 18.5 24.6 30.9 1054

5 Discussion

We can see from the presented results that our SPICE algorithm performs well
on the models studied. For the Lotka-Volterra model the quality of the estimates
is always good — there is no relative error larger than 2.1% in Table 1 for SPICE.
The CPU times are reasonable in absolute terms (about 20 minutes, single core),
and much smaller than those of the methods implemented in COPASI, and with
smaller errors. Also, having one unobserved species (X2) in the data does not
seem to impact the results very much. In particular, from Table 1 we see that the
latent model indeed has higher error than the fully observable model. However,
the error is always smaller than 10%, which is acceptable.



The Yeast Polarization model is a more difficult system: we can indeed see
from Table 1 that a number of parameter estimates have large relative errors.
These are the same ‘hard’ parameters estimated by MCEM2[8] with similar
errors. However, in CPU time terms, our SPICE algorithm does much better
than MCEM2: SPICE can return a quite good estimate (in line with MCEM2’s)
on average in about 18 minutes using the direct method, while MCEM2 would
need about 30 days [8] — a speed-up of 2,400 times. Furthermore, for this model
one could use tau-leaping instead of the direct method, gaining a 3x speedup in
performance while giving up little on accuracy (the Min., Av., and Max. MRE
%ERR were 31.2, 41.5, and 56.3, respectively; Av. CPU time was 303s).

The Schlögl system is another challenging case study, as clearly showed by
results of Table 1, which were obtained by utilising tau-leaping (as a matter of
fact, for the Schlögl model the average accuracy of SPICE increases with the use
of tau-leaping). Our choice was motivated by the large CPU time of the direct
method due to the fact that the upper steady state for X in the model has a
large molecule number (about 600), which negatively impacts the running time
of the direct method samples. The results of Table 1 show that there is no clear
winner: the Evolutionary Programming method in COPASI has the smallest
runtime, but twice the error achieved by SPICE, which has the best accuracy.
As noted before, running the COPASI implementations with larger populations
and more iterations did not significantly improve accuracy for the increased cost.

Lastly, the genetic Toggle Switch presents an interesting real-world case study
with high-throughput data. The model now comprises four hyperparameters,
each of which must be estimated alongside the four kinetic rate constants. In
addition, the non-discrete (and noisy) data is no longer known to be generated
from a convenient mathematical model. In other terms, there is no guarantee
that the model reflects the true underlying biochemical reaction network. Despite
these challenges, our SPICE algorithm does a very good job (in little more than
an hour of CPU time) in computing parameter estimates for which the model
quite closely matches the experimental data — we see in fact from Fig. 5 that
the model simulations fall inside the data, with very few exceptions, and the
empirical and simulated distributions closely match.

Related Work Techniques for stochastic rate parameter estimation fall into
four categories. Early efforts included methods based on MLE: simulated max-
imum likelihood utilises Monte Carlo simulation and a genetic algorithm to
maximise an approximated likelihood [34]. Efforts have been made to incor-
porate the Expectation-Maximisation (EM) algorithm with the SSA [18]. The
stochastic gradient descent explores a Markov Chain Monte Carlo sampler with
a Metropolis-Hastings update step [39]. In [25] a hidden Markov model is used
for the system state, which is then solved by (approximate) likelihood maximisa-
tion. Lastly, a recent work [8] has combined an ascent-based EM algorithm with
a modified cross-entropy method. Another category of methodologies include
Bayesian inference. In particular, approximate Bayesian computation (ABC)
gains an advantage by becoming ‘likelihood free’, and recent advances in se-
quential Monte Carlo (SMC) samplers have further improved these methods



[32, 35]. We note the similarities between ABC(-SMC) approaches and SPICE.
Both methods can utilize ‘elite’ samples to produce better parameter estimates.
A key difference is that ABC(-SMC) uses accepted simulation parameters to
construct a posterior distribution, while SPICE utilizes complete trajectory in-
formation to compute optimal updates of an underlying parameter distribution.
The Bayesian approach presented in [5] can handle partially observed systems,
including notions of experimental error. Linear noise approximation techniques
have been used alongside Bayesian analysis [19]. A very recent work [36] com-
bines Bayesian analysis with statistical emulation in an attempt at reducing the
cost due to the SSA simulations. A third class of methodologies center around
the numerical solution of the chemical master equation (CME), which is often
intractable for all but the simplest of systems. One approach is to use dynamic
state space truncation [3] or finite state projection methods [9] that truncate
the CME state space by ignoring the smallest probability states. Another varia-
tion is to use a method of moments approximation [10, 16] to construct ordinary
differential equations (ODEs) describing the time evolution for the mean, vari-
ance, etc., of the underlying distribution. Other CME approximations are system
size expansion using van Kampen’s expansion [11], and solutions of the Fokker-
Planck equation [22] using a form of linear noise approximation. Finally, another
method [42] treats intervals between time measurements piecewise, and within
each interval an ODE approximation is used for the objective function. This
method has been recently extended using linear noise approximation [43]. A re-
cent work [1], tailored for high-throughput data, proposes a stochastic parameter
inference approach based on the comparison of distributions.

6 Conclusions

In this paper we have introduced the SPICE algorithm for rate parameter infer-
ence in stochastic reaction networks. Our algorithm is based on the cross-entropy
method and Gillespie’s algorithm, with a number of significant improvements.
Key strengths of our algorithm are its ability to use multiple, possibly incom-
plete datasets (including distribution data), and its (theoretically justified) use
of tau-leaping methods for model simulation. We have shown that SPICE works
well in practice, in terms of both computational cost and estimate accuracy
(which was often the best in the models tested), even on challenging case studies
involving bistable systems and real high-throughput data. On a non-trivial case
study, SPICE can be orders of magnitude faster than other approaches, while
offering comparable accuracy in the estimates.
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