
Compiling quantum programs

Paolo Zuliani
Department of Computer Science

Princeton University
Princeton, NJ 08544, USA
pzuliani@cs.princeton.edu

Abstract

In this paper we study a possible compiler for a high-level imperative program-
ming language for quantum computation, the quantum Guarded-Command Language
(qGCL). It is important because it liberates us from thinking of quantum algorithms
at the data-flow level, in the same way as happened for standard computation a few
decades ago.

We make use of the normal-form approach to compiler design, introduced by Hoare,
Jifeng and Sampaio. In this approach a source program is transformed, by means of
algebraic manipulations, into a particular form which can be directly executed by a
target machine. This entails the definition of a simple quantum hardware architecture,
derived from Hoare et al.’s computing model.

Our work provides a general framework for the construction of a compiler for qGCL,
focusing mainly on the correctness of the design. Here we do not deal with other
topics such as efficiency of compiled code, factorisation of unitary transformations
and compilation of quantum data structures.

1 Introduction

In this paper we study a possible compiler for qGCL, a general-purpose programming lan-
guage for quantum computation. qGCL has been successfully used to describe and reason
about all known quantum algorithms and also to derive one of them (the Deutsch-Jozsa
algorithm) from its specification [21]. Furthermore, qGCL has been used to describe and
reason about peculiar quantum features, such as nonlocality and counterfactual computa-
tion [14, 26, 28].

Our work on qGCL has shown how to raise the level of abstraction from data-flow
reasoning about quantum computation to that used in normal “software engineering”.
Indeed the benefit of that work is its use of abstract specification and of permitting data
refinements to be used in implementing a specification using quantum procedures. But
these benefits can be realised only if there is an accompanying method of compilation
from qGCL into a data-flow model. That is what justify the use of high-level languages
in Computer Science in general. In this paper such a method is provided.

qGCL was developed as a superset of the probabilistic Guarded-Command Language
(pGCL), a high-level imperative programming language which can describe both classical

1

1 INTRODUCTION 2

and probabilistic computation [17, 15]. In particular, qGCL extends pGCL with four
constructs:

• transformation q, that converts a classical bit register to its quantum analogue, a
qureg;

• initialisation, which prepares a qureg for a quantum computation;

• evolution, which consists of iteration of unitary operators on quregs;

• finalisation or observation, which reads the content of a qureg.

qGCL enjoys the same features of pGCL: it has a rigorous semantics and an associated
refinement calculus (see for example [17, 15, 12]), which include program refinement, data
refinement and combination of specifications with code.

In the design of the compiler we make use of the normal-form approach introduced by
Hoare et al. [10]. Their idea is to compile a Guarded-Command Language program by
transforming it, by means of algebraic manipulations, into a particular form which can be
directly executed by a target machine. At each step high-level constructs are refined into
low-level constructs. The algebraic laws used in the process are given by the refinement
calculus associated with pGCL and therefore the correctness of the compiler follows from
the soundness of each of the algebraic laws. Thus we design a compiler which is correct
by construction.

The biggest advantage of this approach is its modularity: at each refining step we
may postpone implementation decisions to a later, more appropriate, time. In an extreme
case we may even decide not to provide any implementation for a particular stage, and
this will not undermine the correctness of the compiler. That observation will prove very
useful in our case as the compiler for qGCL we are going to describe will not provide any
module for factorising unitary transformations in terms of “basic” quantum operators,
though we pose the requirements for such a module. Therefore we do not need to specify
the implementation of that module and we are not bound to a particular one, so that if a
more efficient factorising method is developed we can use it immediately in our compiler.

Another advantage of the normal-form approach is that it provides a single framework,
the refinement calculus, for developing programs, reasoning about programs and designing
compilers, thereby providing a unique bridge which connects specifications, high-level
(source) programs and low-level implementations.

With respect to quantum architecture we devise a simple generalisation of standard
architecture which fits into Hoare et al.’s hardware model. That architecture imposes
loose requirements for the quantum hardware, since at the time of writing it is not clear
on which architecture quantum computers will eventually be built. These requirements
are equivalent to those found in other quantum architectures (for example the quantum
circuit model [5, 2, 18]) and it seems that they represent what can currently be assumed
about quantum architectures. However, the technique presented in this paper will be
useful whatever quantum architecture is decided upon.

We start exposition by giving a short introduction to quantum programming with
qGCL. Next we apply Hoare et al.’s normal-form approach [10] for developing a compiler
for qGCL. Their work considered Dijkstra’s plain Guarded-Command Language, thus

2 QUANTUM PROGRAMMING 3

omitting probabilism, so we expand the normal-form approach to cover pGCL and in turn
qGCL. We follow the order of exposition of Hoare et al.’s paper and make our changes
when needed. The compilation process is split into three main steps: simplification of
expressions, reduction to normal form (control structure elimination) and machine state
introduction.

2 Quantum programming

We give here a short presentation of the features of qGCL (a full introduction can be
found in [21, 28]). qGCL is an extension of pGCL [17], which in turn extends Dijkstra’s
Guarded-Command Language GCL [7] with probabilism.

We start the exposition with the data types required by quantum computation, then
we introduce pGCL and successively qGCL’s quantum-related constructs. We advise the
readers that all the relevant quantum-mechanical definitions and concepts are collected
and summarised in Appendix A.

2.1 Quantum types

We present a transformation q which maps a classical data type to its quantum analogue.
All our later examples require the application of q only to registers, so we restrict ourselves
to that case.

We define the type B =̂ {0, 1}, which we will treat as booleans or bits, depending
on convenience. A classical register of size n:N is a vector of n booleans. The type
of all registers of size n is then defined to be the set of boolean-valued functions on
{0, 1, . . . , n− 1}:

B
n =̂ {0, 1, . . . , n− 1} −→ B .

The quantum analogue of Bn is the set of complex-valued functions on Bn whose squared
modulus sum to 1:

q(Bn) =̂ {χ:Bn −→ C |
∑
x:Bn

|χ(x)|2 = 1}

where we denoted the modulus of a complex number z by |z|. An element of q(B) is called
a qubit [22] and that of q(Bn) a qureg [21].

Classical state is embedded in its quantum analogue by the Dirac delta function:

δ:Bn −→ q(Bn)
δx(y) =̂ (y = x) .

The range of δ, {δx | x:Bn}, forms a basis (called the standard basis) for quantum states,
that is:

∀χ:q(Bn) • χ =
∑
x:Bn

χ(x)δx .

The Hilbert space Bn −→ C (with the structure making it isomorphic to C2n) is called
the enveloping space of q(Bn).

2 QUANTUM PROGRAMMING 4

2.2 Probabilistic language pGCL

A Guarded-Command Language program is a sequence of assignments, skip and abort
manipulated by the standard constructors of sequential composition, conditional selection,
repetition and nondeterministic choice [7]. Assignments is in the form x := e, where x
is a vector of program variables and e a vector of expressions whose evaluations always
terminate with a single value. pGCL denotes the Guarded-Command Language extended
with the binary constructor p⊕ for p:[0, 1], in order to deal with probabilism. The BNF
syntax of pGCL is as follows:

〈program〉 ::= {〈proc declaration〉#}〈statement〉{ # 〈statement〉}
〈statement〉 ::= skip |

abort |
x := e |
〈proc call〉 |
〈loop〉 |
〈conditional〉 |
〈nondeterministic choice〉 |
〈probabilistic choice〉 |
〈local block〉

〈loop〉 ::= while 〈cond〉 do 〈statement〉 od

〈cond〉 ::= 〈boolean expression〉
〈conditional〉 ::= 〈statement〉� 〈cond〉� 〈statement〉

executes the LHS if predicate 〈cond〉 holds

〈nondeterministic choice〉 ::= 〈statement〉 2 〈statement〉
〈probabilistic choice〉 ::= 〈statement〉 p⊕ 〈statement〉

executes the (LHS,RHS) with probability (p, 1− p)
〈local block〉 ::= var • 〈statement〉 rav

〈proc call〉 ::= 〈identifier〉 (〈actual parameter list〉)
〈proc declaration〉 ::= proc 〈identifier〉 (〈formal parameter list〉) =̂ 〈statement〉

where for brevity we omit the formal definitions of 〈identifier〉, 〈actual parameter list〉,
〈formal parameter list〉 and 〈boolean expression〉. Parameters can be declared as value,
result or value result, according to Morgan’s notation [16]. As a quick explanation we
will say that a value parameter is read-only, a result parameter is write-only and a value
result parameter can be read and written.

For the probabilistic combinator p⊕ we allow p to be an expression whose evaluation
returns a real in [0, 1]. Both nondeterministic and probabilistic choice may be written
using a prefix notation, in case the branches are more than two. If [Pj • 0 6 j < m]
denotes a finite indexed family of programs then

2 [Pj • 0 6 j < m]

2 QUANTUM PROGRAMMING 5

chooses nondeterministically to execute one of the programs Pi. For probabilistic choice
let [(Pj , rj) • 0 6 j < m] be a finite indexed family of (program, number) pairs with∑

06j<m rj = 1, then the probabilistic choice in which Pj is chosen with probability rj is
written in prefix form

⊕[Pj @ rj • 0 6 j < m]

(whose advantage is to avoid the normalising factors required by nested infix form).

If E is a finite non empty set of expressions and x a program variable, then in GCL the
assignment x :∈ E denotes the nondeterministic choice over all individual assignments of
elements of E to x. In pGCL that choice is interpreted to occur with uniform probability.

Semantics for pGCL can be given either relationally [12] or in terms of expectation
transformers [15]. A Galois connection embeds the relational model in the expectation-
transformer model. The latter provides a superior simplicity in calculations and the inter-
ested reader can find a short exposition of its main definitions and concepts in Appendix
B.

2.3 Reversible programs

In this section we shall give a formal definition of reversibility for pGCL programs, and
establish some properties. It is needed by the fact that quantum computation is reversible
by its own nature, that is, it always possible to “undo” the computation and return to
the conditions prior to execution. We note that, in general, classical computation is not
reversible.

Due to space constraints we will limit exposition to the basic concepts only and avoid
proofs. A thorough discussion of the reversibility problem in pGCL and all technical
details can be found in [27].

Definition 2.1. A statement R is called reversible iff there exists a program S such that

(R # S) = skip.

S is called an inverse of R; clearly it is not unique. Equality is at the semantic level,
as explained in Appendix B.

Definition 2.2. A program P is called reversible iff every statement of P is reversible.

The requirement that any statement of P and not just P must be reversible correspond
to the need that any step of the computation can be inverted. The following example
motivates this requirement: consider the programs R,S defined (see Appendix C for a
formal definition of stack, push and pop)

R =̂ (push x # x := −7 # x := x2)

S =̂ pop x

One can informally check that indeed (R # S) = skip, while it is not true that each step
of R can be inverted.

2 QUANTUM PROGRAMMING 6

Lemma 2.1. Let R be a reversible program. Then there exists a program S such that:

(R # S) = skip.

Again, S is called an inverse of R and it is not unique. It can be shown that a
reversible program must necessarily terminate for all inputs. The converse is false: the
trivial program x := 0 does terminate but it is certainly not reversible.

A general technique for transforming any terminating pGCL program into an equiva-
lent but reversible program is given in [27].

2.4 Quantum language qGCL

A quantum program is a pGCL program invoking quantum procedures and the resulting
language is called qGCL. Quantum procedures can be of three different kinds: Initialisa-
tion (or state preparation) followed by Evolution and finally by Finalisation (or observa-
tion).

2.4.1 Initialisation

Initialisation is a procedure which simply assigns to its qureg state the uniform square-
convex combination of all standard states

∀χ:q(Bn) • In(χ) =̂

(
χ :=

1√
2n

∑
x:Bn

δx

)
.

There χ is a result parameter.

Initialisation so defined is feasible in the sense that it is achievable in practice [6] by
initialising the qureg to the classical state δ0 (where 0 denotes the register identically false)
and then subjecting that to evolution by the (unitary) Hadamard transform, defined as a
tensor power as follows:

Hn:q(Bn)→ q(Bn)

H1(χ)(x) =̂
1√
2

(χ(0) + (−1)xχ(1))

Hn+1 =̂ Hn ⊗H1

where exponentiation of bits is standard (−1)x = −1 /x . 1. In our language Initialisation
could be defined as:

proc In (result χ) =̂ (χ := δ0 # χ := H(χ))

where H is the Hadamard transform of appropriate size.

For example on q(B), after initialisation, evolution by the Hadamard transformation
H1 results in χ = δ0 (because H1 is not only unitary but equal to its own adjoint and so
self-inverse). Thus our definition of initialisation does not exclude setting state to equal
δ0 (or any other standard state for that matter).

2 QUANTUM PROGRAMMING 7

2.4.2 Evolution

Quantum-mechanical systems evolve over time under the action of unitary transforma-
tions (see Appendix A for the definition). Evolution thus consists of iteration of unitary
transformations on quantum state. (It is thought of, after initialisation, as achieving all
superposed evolutions simultaneously, which provides much of the reason for quantum
computation’s efficiency.) In qGCL unitary evolution may be introduced in two forms:
explicit (unitary) transformations on quantum state and procedures.

We have already given an example of explicit unitary transformation: the Hadamard
transform defined in section 2.4.1. Evolution of qureg χ under unitary operator U is
described in the form:

χ := U(χ).

The no-cloning theorem (see Appendix D) forbids any assignment χ := U(ψ) if (syntacti-
cally) χ 6= ψ.

The other type of unitary evolution is offered via a particular class of procedures
defined by the qproc keyword. The body of a qproc is standard (i.e. non-quantum)
code but, with respect to a standard procedure, such code is meant to be executed on a
quantum computer. In Section 2.5 we give the formal syntax for both forms of quantum
evolution.

Since quantum transformations are reversible, it follows that code of a qproc must
be reversible (thus terminating, see section 2.3). Again, evolution is feasible: it may
be implemented using universal quantum gates [1, 5] and code in qproc’s can be made
reversible using the technique illustrated in [27].

2.4.3 Finalisation

Finalisation corresponds to physical observation (or state reduction). Consider a qubit
χ:q(B) initialised via quantum procedure In: we have that χ = 1√

2
(δ0 + δ1).

Observing χ will force it either to basis state δ0 or to basis state δ1. The choice of
which state is entirely probabilistic and the probabilities are given by the squared moduli
of the values of χ: in our case the probabilities are just 1

2 , since χ(0) = χ(1) = 1√
2
. An

observation returns also a value which identifies the basis state on which χ has collapsed.

Using the probabilistic combinator of pGCL, quantum observation can be simply writ-
ten as:

(i, χ := 0, δ0) |χ(0)|2⊕ (i, χ := 1, δ1)

where i is the return value and we recall that (|χ(0)|2 + |χ(1)|2) = 1 since χ is a qubit.

In the general qureg case χ =
∑

06i<n χ(j)δj , observation reduces χ to basis state δj
with probability |χ(j)|2. By using the infix form of the probabilistic combinator we model
quantum observation of qureg χ:q(Bn) as:

⊕[(i, χ := j, δj) @ |χ(j)|2 | 0 6 j < n] .

In general, an observable is represented by a self-adjoint operator and the measurable
values are exactly the eigenvalues of that operator. Equivalently, we can define an observ-
able from a family of pairwise orthogonal subspaces which together span the enveloping

2 QUANTUM PROGRAMMING 8

space. The axioms of quantum mechanics assert that the measurement reduces the state
vector to lie in one of those subspaces with different probabilities. For an exposition of
basic quantum theory see [11].

Let O be an observable defined by the family of pairwise orthogonal subspaces {Si | 0 6
i < m}. In our notation we write Fin(O, i, χ) for the measurement of O on a quantum
system described by state χ:q(Bn), where i is a result parameter determining the subspace
to which state is reduced and χ is a value-result parameter giving that state.

Finalisation is entirely defined using the probabilistic combinator of pGCL (see [21, 28]
for an unabridged treatment); in our notation for procedures we write:

proc Fin (O, result i:{0, . . . ,m− 1}, value result χ:q(Bn)) =̂

⊕
[(

i, χ := j,
PSj (χ)

‖PSj (χ)‖

)
@ 〈χ, PSj (χ)〉 | 0 6 j < m

]
.

where PSj is the projector onto subspace Sj . That definition of Fin remains valid when
an observable O is defined by a self-adjoint operator O. In that case the projector for the
j-th eigenspace of O is written P jO.

We now introduce a simple form of finalisation important enough to deserve its own
notation. For δx:q(Bn) we define Cδx =̂ {αδx • α:C} i.e. the one-dimensional complex
vector space spanned by the basis vector δx. Let ∆ be the indexed family of subspaces
[C δx •x:Bn]: then finalisation with respect to ∆ is called diagonal finalisation and abbre-
viated Fin(∆, x, χ). We might not decide to return x since q(Bn)∩C δx is a singleton: in
that case we would just write Fin(∆, χ).

2.5 Valid qGCL programs

The formal syntax for qGCL is as follows:

〈qprogram〉 ::= {〈qproc declaration〉|〈proc declaration〉#}〈qstatement〉{ # 〈qstatement〉}
〈qstatement〉 ::=χ := 〈unitary op〉(χ) |

Fin(〈identifier〉, [〈identifier〉|〈identifier〉, 〈identifier〉]) |
In(〈identifier〉) |
〈statement〉

χ ::= 〈identifier〉
〈qproc declaration〉 ::= qproc 〈identifier〉 (〈formal parameter list〉) =̂ 〈qproc body〉

〈qproc body〉 ::= var • 〈qproc statement〉{#〈qproc statement〉} rav

〈qproc statement〉 ::= skip |
x := e |
〈qloop〉 |
〈qconditional〉

〈qloop〉 ::= while 〈cond〉 do 〈qproc statement〉 od

〈qconditional〉 ::= 〈qproc statement〉� 〈cond〉� 〈qproc statement〉

3 SIMPLIFYING EXPRESSIONS 9

where 〈unitary op〉(χ) is just some mathematical expression involving qureg χ; such ex-
pression should of course denote a unitary operator. As we see from the syntax, qGCL
extends pGCL with the following:

• qproc’s are used to run standard GCL code on the quantum computer;

• to model quantum evolution, assignments outside a qproc may take the form:

χ := U(χ)

where χ is a qureg and U an unitary transformation over quregs. Assignments inside
a qproc can only be standard, as explained in section 2.4.2;

• outside qproc’s we may also use Finalisation and Initialisation on quregs, and of
course calls to qproc’s.

We also observe that a qproc is constituted by a single local block of deterministic (non-
probabilistic) code. Also, any pGCL program is a valid qGCL program.

Calls to a qproc follows the custom as for standard procedures, except that standard
parameters of the definition are transformed into the corresponding quantum types (we
restrict parameters to boolean registers, as quregs are so far the only quantum data type
available). Furthermore, all parameters are considered to be value-result, as the no-
cloning theorem forbids the copy of a qureg. Consider the following qproc:

qproc Dummy (value a:Bn) =̂ DummyBody

a call to Dummy would then be:

var χ:q(Bn)•
Dummy(χ)

rav.

As qGCL is entirely defined in terms of pGCL’s commands and constructs it follows
that pGCL semantics (see Appendix B) is an adequate semantic model for qGCL.

3 Simplifying expressions

We now start developing our compiler for qGCL by addressing the first step of the com-
pilation process: the simplification of expressions.

In section 2 of their paper [10], Hoare et al. describe a specification space for the
Guarded-Command Language. The predicate-transformer semantics for GCL can be em-
bedded in the expectation-transformer semantics for pGCL (see [17, 15] for example) which
makes sure the programming laws remain sound. The only difference is that whilst GCL
programs are conjunctive, that is:

P # (Q2R) = (P #Q)2 (P #R)

for pGCL programs we only have a refinement:

P # (Q2R) v (P #Q)2 (P #R)

3 SIMPLIFYING EXPRESSIONS 10

and the equality holds, in the expectation-transformer model, if and only if P is not
probabilistic (i.e. a standard GCL program). Fortunately conjunctivity is not required in
Hoare et al.’s work, so all their laws are consistent with pGCL.

Several laws satisfied by the probabilistic choice constructor are listed in Appendix C
for quick reference; more laws are given in [12].

Next we deal with the proper simplification of expressions, which mainly involves the
introduction of a register variable A of the target hardware. Here we add simplification
rules for probabilistic choice, quantum finalisation and procedures; the first rule introduces
register variable A into probabilistic choice:

Lemma 3.1. If variable A does not appear in expression p then:

Q p⊕R =


varA:[0, 1] •
A := p#
(Q A⊕R)

rav

 .

Proof. We reason:

Q p⊕R
= skip identity and law D-3

(varA • rav #Q) p⊕ (varA • rav #R)

= law D-4

(varA •A := p rav #Q) p⊕ (varA •A := p rav #R)

= laws S-2, D-2

varA • (A := p #Q) p⊕ (A := p #R) rav

= law A-1

varA •A := p # (Q A⊕R) rav

The next rule rewrites a probabilistic choice in more “standard” terms.

Lemma 3.2. For programs Q,R and variable b not occurring free in both Q and R, we
have:

Q p⊕R =


var b:B •

(b := 1) p⊕ (b := 0)#
(Q / b . R)

rav

 .

Proof. We reason:

Q p⊕R
= skip identity and law D-3

(var b • rav #Q) p⊕ (var b • rav #R)

3 SIMPLIFYING EXPRESSIONS 11

= laws D-4, D-5

(var b • b := 1 #Q rav) p⊕ (var b • b := 0 #R rav)

= laws S-2, D-2

var b • (b := 1 #Q) p⊕ (b := 0 #R) rav

= programming laws

var b • (b := 1 #Q / b . R) p⊕ (b := 0 #Q / b . R) rav

= law S-2

var b • (b := 1) p⊕ (b := 0) # (Q / b . R) rav

Therefore we can compile any probabilistic choice into the generation of a random
boolean followed by a conditional choice. Another solution to our compilation problem is:

Q p⊕R =


var r:[0, 1] •
r :∈ [0, 1]#
(Q / (r < p) . R)

rav

 ,

but it requires a pGCL semantics extended to continuous distributions. That work has
been already carried out by McIver and Morgan [13], but since we do not need to use
continuous distributions later, we opt for the former (and simpler) solution and we do not
need to augment our semantics.

We may suppose that the generation of the probabilistic boolean is implemented by
some special low-level instruction of the target machine, but it turns out that we can
implement it by high-level qGCL commands, that is by means of an appropriate quantum
computation. Therefore, we now give that quantum implementation.

Lemma 3.3. If variable χ is different from b and A, then:

(b := 1) A⊕ (b := 0) =


var χ:q(B) •
χ := Harccos(

√
1−A)(δ0)#

Fin(∆, b, χ)
rav


where Hθ is the (unitary) rotation operator defined:

Hθ:q(B)→ q(B)

Hθ(χ)(x) =̂ (1− x)(χ(0) cos θ − χ(1) sin θ) + x(χ(0) sin θ + χ(1) cos θ).

Proof. We reason:

var χ • χ := Harccos(
√

1−A)(δ0) # Fin(∆, b, χ) rav

= definition of Hθ

3 SIMPLIFYING EXPRESSIONS 12

var χ • χ := (δ0

√
1−A+ δ1

√
A) # Fin(∆, b, χ) rav

= definition of Fin

var χ • χ := (δ0

√
1−A+ δ1

√
A) # (b, χ := 0, δ0) 〈χ,P 0

∆(χ)〉⊕ (b, χ := 1, δ1) rav

= law A-1

var χ•(
χ := (δ0

√
1−A+ δ1

√
A)#

b, χ := 0, δ0

)
〈χ,P 0

∆(χ)〉[χ\(δ0
√

1−A+δ1
√
A)]⊕(

χ := (δ0

√
1−A+ δ1

√
A)#

b, χ := 1, δ1

)
rav

= definition of P 0
∆ and logic

var χ •(
χ := (δ0

√
1−A+ δ1

√
A)#

b, χ := 0, δ0

)
1−A⊕

(
χ := (δ0

√
1−A+ δ1

√
A)#

b, χ := 1, δ1

)
rav

= law A-2

var χ • (b, χ := 0, δ0) 1−A⊕ (b, χ := 1, δ1) rav

= law P-2

var χ • (b, χ := 1, δ1) A⊕ (b, χ := 0, δ0) rav

= laws S-2, D-2

(var χ • b, χ := 1, δ1 rav) A⊕ (var χ • b, χ := 0, δ0 rav)

= laws D-5, D-4

(b := 1 # var χ • rav) A⊕ (b := 0 # var χ • rav)

= laws D-3 and skip identity

(b := 1) A⊕ (b := 0)

At this point we are ready to give a quantum implementation for probabilistic choice.

Lemma 3.4. If variables A and χ do not appear in programs Q and R then:

Q p⊕R =



var A:[0, 1], χ:q(B)•
A := p#
χ := Harccos(

√
1−A)(δ0)#

Fin(∆, χ)#
(Q / χ = δ1 . R)

rav


Proof. We start from LHS:

3 SIMPLIFYING EXPRESSIONS 13

Q p⊕R
= lemma 3.1

varA:[0, 1] •A := p # (Q A⊕R) rav

= lemma 3.2

varA:[0, 1], b:B •A := p # (b := 1) A⊕ (b := 0) # (Q / b . R) rav

= lemma 3.3

varA:[0, 1], b:B, χ:q(B)•
A := p # χ := Harccos(

√
1−A)(δ0) # Fin(∆, b, χ) # (Q / b . R)

rav

= definition of Fin and logic

varA:[0, 1], b:B, χ:q(B)•
A := p # χ := Harccos(

√
1−A)(δ0) # Fin(∆, b, χ) # (Q / χ = δ1 . R)

rav

= suppress and undeclare variable b in Fin

varA:[0, 1], χ:q(B)•
A := p # χ := Harccos(

√
1−A)(δ0) # Fin(∆, χ) # (Q / χ = δ1 . R)

rav

Next we give two rules for “simplifying” finalisation. The first one allows us to write
a general observation in terms of a diagonal (thus simpler) observation (the proof is a
replay, in our formalism, of standard results of linear algebra).

Lemma 3.5. If O is an observable for qureg χ:q(Bn) then:

Fin(O, r, χ) =

 χ := CO(χ)#
Fin(∆, r, χ)#
r, χ := ar, C

−1
O (χ)


where the ar’s are the eigenvalues of O (the self-adjoint operator corresponding to O) and
CO is the unitary operator which change from O’s eigenvector basis to the standard basis.

Proof. By the spectral theorem the eigenvectors γi of O form an orthonormal basis for the
enveloping space. Furthermore, the action of O on χ can be written:

O(χ) =

n−1∑
i=0

γi · ai〈γi, χ〉

where the ai’s are the (non-degenerate) eigenvalues of O. Let U be a unitary operator.
From the rules of quantum theory we infer that the quantum system described by state
χ and observable O is equivalent to the system described by state U(χ) and observable

3 SIMPLIFYING EXPRESSIONS 14

UOU−1, that is they return the same physical predictions (for a more detailed treatment
see [11] for example). It is now a trivial matter of algebra to show that:

O(χ) = U−1(UOU−1)U(χ) . (1)

Now, let CO be the transformation defined as:

CO(χ) =̂

n−1∑
i=0

δi · 〈γi, χ〉 .

It is easy to see that CO represents the basis change from basis γi to standard basis δi;
moreover we have that CO is unitary, thus a legitimate quantum computation.

Now we reason (omitting Finalisation’s normalising factor for brevity): χ := CO(χ)#
Fin(∆, r, χ)#
r, χ := ar, C

−1
O (χ)


= definition of Fin χ := CO(χ)#
⊕ [(r, χ := j, P j∆(χ)) @ 〈χ, P j∆(χ)〉 • 0 6 j < n]#
r, χ := ar, C

−1
O (χ)


= law A-1 ⊕ [(χ := CO(χ)#

r, χ := j, P j∆(χ)

)
@ 〈CO(χ), P j∆CO(χ)〉 • 0 6 j < n

]
#

r, χ := ar, C
−1
O (χ)


= laws A-2, S-2

⊕
[(

r, χ := j, P j∆CO(χ))#
r, χ := ar, C

−1
O (χ)

)
@ 〈CO(χ), P j∆CO(χ)〉 • 0 6 j < n

]
= law A-2

⊕ [(r, χ := aj , C
−1
O P j∆CO(χ)) @ 〈CO(χ), P j∆CO(χ)〉 • 0 6 j < n]

= definition of CO and P jO and logic

⊕ [(r, χ := aj , P
j
O(χ)) @ 〈χ, P jO(χ)〉 • 0 6 j < n]

= definition of Fin

Fin(O, r, χ)

The second rule introduces register variable A in finalisation.

Lemma 3.6. If variable A is distinct from r, then:

Fin(O, r, χ) =


varA•

Fin(O, A, χ)#
r := A

rav

 .

3 SIMPLIFYING EXPRESSIONS 15

Proof. We reason:

Fin(O, r, χ)

= skip identity and law D-3

Fin(O, r, χ) # varA • rav

= law D-5

varA • Fin(O, r, χ) rav

= definition of Fin

varA • ⊕[(r, χ := j, P jO(χ)) @ 〈χ, P jO(χ)〉 | 0 6 j < m] rav

= law D-9

varA • ⊕[(A, r, χ := j, j, P jO(χ)) @ 〈χ, P jO(χ)〉 | 0 6 j < m] rav

= law A-2

varA • ⊕[(A,χ := j, P jO(χ) # r := A) @ 〈χ, P jO(χ)〉 | 0 6 j < m] rav

= law S-2

varA • ⊕[(A,χ := j, P jO(χ) @ 〈χ, P jO(χ)〉 | 0 6 j < m] # r := A rav

= definition of Fin

varA • Fin(O, A, χ) # r := A rav

For procedures there is little to add, but we must take into account some constraints
imposed by quantum theory. Consider the (standard/quantum) procedure Z defined as:

proc/qproc Z(value p1, result p2, value result p3) =̂ Zbody

where p1 is not a qureg. If Z is a standard procedure, then a call Z(a, b, c) is refined by
the following program:

var p1, p2, p3•
p1, p3 := a, c#
Zbody#
b, c := p2, p3

rav .

The proof is straightforward from the semantics for procedure call [16]. However, if Z is a
qproc and either p2 or p3 are quregs, the no-cloning theorem would make the assignments
above invalid in qGCL. Fortunately the solution is pretty simple: we use simultaneous
assignments, which are valid for quantum registers, too.

Lemma 3.7. Let Z be the (standard/quantum) procedure defined as:

proc/qproc Z(value p1, result p2, value result p3) =̂ Zbody

where p1 is not a qureg, then:

3 SIMPLIFYING EXPRESSIONS 16

var a, b, c • Z(a, b, c) rav

v
var a, b, c, p1, p2, p3•
p1 := a#
p3, c := c, p3#
Zbody#
b, p2 := p2, b#
c, p3 := p3, c

rav

where b and c are quregs if Z is qproc.

Proof. The refinement is again a straightforward application of algebraic programming
laws.

The lemmata above enable us to expand theorem 5.1 of [10] to include qGCL constructs
as well. Intuitively, this theorem states that any program Q is refined by a program R
which “looks” closer to a hardware implementation, as high-level constructs are imple-
mented by means of low-level constructs. Standard code in quantum procedures also
needs to be made reversible (see section 2.3) by means of the technique exposed in [27].

Theorem 3.8. If Q is a qGCL program, then there is a qGCL program R such that:

Q v var v,A •R rav

where:

v is a list of variables,

A is the accumulator variable,

R does not contain any declaration or undeclaration,

all conditions of conditionals and iterations in R are A,

all assignments have one of the “simple” forms

A := A bop t or A := dop A or v := A or A := t

where t is a variable or constant, bop is a binary operator and dop a unary operator,

and

all probabilistic choices are reduced to boolean generation of probability A, all final-
isations are diagonal with return parameter A and code in quantum procedures is
reversible.

Proof. For standard code we point the interested reader to Hoare et al.’s paper [10].
For procedures the thesis follows by the lemmata shown in this section and structural
induction. Standard code in quantum procedures is made reversible by means of the
technique presented in [27].

4 NORMAL FORM REDUCTION 17

4 Normal form reduction

This phase of the compilation process eliminates high-level control structures, reducing
the source program to a single flat iteration called normal form, which models an arbitrary
executing device. A simple normal form is a specialisation used to represent our target
architecture. We first give Hoare et al.’s definition of normal form. It is:

var v • v : [a, true] # while b do Q od# : [true, c] rav

where:

v is a list of variables,

a is a predicate representing an assumption about the initial state,

c is a predicate representing a coercion about the final state,

Q is a conditional
R / b1 . (. . . (S / bn . T))

where R, . . . , S are simple assignments and T is arbitrary,

b1, . . . , bn, c are pairwise disjoint and b =̂ (b1 ∨ . . . ∨ bn).

This will be abbreviated by:
v : [a, b −→ Q, c].

Hoare et al.’s architecture [10] has two classical registers: the already introduced general-
purpose register A and a sequential control register P , which contains the memory address
of the next instruction to be executed. We now turn to the simple normal form, which
describes the behaviour of the hardware architecture.

Definition (Hoare et al.). A normal form (P, v : [a,R, c]) is simple if there exist two
integers s and f such that s 6 f and

a = (P = s), c = (P = f),

R = 2s6k<f (P = k −→ Rk),

Rk = (xk, P := ek, dk)

where the xk’s are program variables and the simultaneous assignment Rk can be executed
by a single machine instruction, that is expressions ek, dk are simple and in particular
expressions dk have the form:

P + 1, n, ((P + 1) / A . n)

where n is a constant.

The (simple) normal form describing the behaviour of a program stored in a memory
m can be thus written as:

var P,A•
P := s#
while (s 6 P < f) do m[P] od#
: [true, P = f]

rav .

4 NORMAL FORM REDUCTION 18

4.1 Target quantum architecture

We now describe our target quantum hardware architecture, which is just an augmentation
of that described in [10]. In particular, the memory space is unique: it will contain
standard variables and quregs in the same address space; we also suppose to have a read-
only classical register X which holds finalisation’s result. The target code is augmented
with two new sets of instructions:

- a set U =̂ {ui • 0 6 i < n} of n primitives for implementing any unitary operator.
Each ui has the form χ := ui(χ) where χ is a qureg and unitary operators are
achieved by sequential composition of these assignments;

- a set O =̂ {oj • 0 6 j < m} of m primitives for implementing diagonal observation.
Each oj has the form χ := oj(χ) where χ is a qureg and observation is achieved
composing sequentially these assignments. Each observation terminates with the
assignment A := X, which puts the result in register variable A.

Since the ui’s and oj ’s are used as simple assignments, they readily comply with the
definition of simple normal form.

We know that due to the continuous nature of unitary operators, it is not possible to
implement them exactly using only finite means. Therefore one can only hope to produce
a good approximating operator by means of a finite set of “basic” operators. Fortunately
this is possible and there are various sets of quantum operators which can approximate any
unitary operator: see for example the works of Barenco [1], Deutsch et al. [5] and Barenco
et al. [2]. The drawback is that most unitary operators can only be approximated using an
exponential amount of these “basic” operators and therefore those operators correspond
to inefficient computations. So far only a few unitary operators have been shown to
be efficiently (i.e. polynomially) implementable: the quantum Fourier transform and the
Hadamard transform.

We are not particularly interested in any set of universal quantum operators, we just
make the assumption that one is available and can approximate with arbitrary accuracy
any unitary operator acting on quregs of any size. This assumption is motivated by the
threshold theorem for quantum computation (see for example [18]). By combining quantum
error-correction codes and fault-tolerant quantum gates it makes possible implementing
arbitrarily large quantum computations reliably, at the expense of a polylogarithmic in-
crease of the size of the original circuit.

With respect to finalisation we clearly assume that diagonal observation is efficiently
implementable by some hardware. These assumptions are equivalent to others found
in different models for quantum computation, for example the quantum circuit model
[5, 2, 18].

In an alternative approach one might allow the use of special-purpose hardware in
which particular (non-universal) unitary gates are used. Such a view is very similar to the
hardware compilation approach, in which high-level source programs are compiled into
special-purpose hardware chips (see for example [4, 19]). A clear advantage of this ap-
proach is the greater speed at which programs are executed, since the supporting hardware
is specialised, thus simpler and faster. This simplicity of the hardware might also turn
out to be useful for quantum computing, because a special-purpose quantum chip would

4 NORMAL FORM REDUCTION 19

be easier to build than a general-purpose one. On the other hand, specialised hardware
has a narrow scope of utilisation, but due to the limited number of quantum algorithms
developed so far this might not be an issue.

Since in this work we do not focus on any specific set U and set O of quantum prim-
itives, we do not have to specify how unitary operators and diagonal finalisation are
compiled in terms of those primitives. Nevertheless, the assumptions made enable us to
carry on with our reasoning and deduce the correctness of our compiler. Therefore, one
might think the part of the compiler which deals with unitary operators and finalisations
as a separate module which can be later improved or changed, without affecting the overall
compiler’s correctness (of course the module must comply with the requirements above).

Before turning to the main theorem of this section we have to give compilation rules
for quantum procedures.

4.2 Compiling quantum procedures

In this section we deal with the problem of simulating classical code on a quantum pro-
cessor. We recall that such a possibility is allowed by means of qproc’s.

A procedure defined as a qproc has a body of standard code, but we request that such
code is executed on quantum hardware rather than on standard hardware. Standard code
can be made reversible by the technique set out in [27] and here we give an implementation
of that technique in terms of unitary operations. We make use of the so-called controlled-U
operations, which are just a simplification of the standard conditional.

Definition. Let cond be a predicate and U a reversible statement:

C(cond, U) =̂ (U / cond . skip).

We demand U be reversible because we want to execute controlled operations on
the quantum hardware. Our choice is motivated by the existence of efficient quantum
implementations of the controlled operation, as described in [2, 3, 18]. We note that
Feynman’s CNOT [9], the earliest example of a controlled operation, clearly belongs to
this class of transformations.

Our aim is thus to rewrite the standard conditional and loop constructor by means of
these controlled operations, in order to have code executable on the quantum hardware.
Since by theorem 3.8 we deal with simple assignments involving only binary and unary
mathematical-logic operators, assignments are thus better treated using the quantum ver-
sion of those operators, which are readily available from their classical counterparts (see
[18] for example). We stress once again that here we do not specify how controlled oper-
ations are actually implemented by means of quantum low-level instructions ui’s: we just
assume that an efficient quantum implementation exists.

In the following lemma we provide an implementation for the reversible conditional
by means of controlled operations (the reversible conditional is explained in [27], stacks
and related procedures are also defined in Appendix C for convenience). We recall that
control structures are first simplified by means of theorem 3.8.

4 NORMAL FORM REDUCTION 20

Lemma 4.1. Let P and Q be reversible statements. If variable A appears in neither P
nor Q then:

(P # push T) / cond . (Q # push F) =



var A:B•
push F #
C(cond, (pop A # P # push T))#
top A#
C(¬A, (pop A #Q # push F))

rav

 .

Proof. We reason from the RHS:

RHS

= introduce K

var A • push F # C(cond, (pop A # P # push T)) #K rav

= controlled operation and law S-2

var A • push F # (pop A # P # push T #K) / cond . K rav

= semantics of push and law A-1

var A • (push F # pop A # P # push T #K) / cond . (push F #K) rav

We now reason on the left-hand branch of the previous conditional:

push F # pop A # P # push T #K

= definition of K and programming laws

A := F # P # push T # top A # C(¬A, (pop A #Q # push F))

= definition of controlled-U and top

A := F # P # push T # pop A # push A # ((pop A #Q # push F) / ¬A . skip))

= law ST-1

A := F # P #A := T # push A # ((pop A #Q # push F) / ¬A . skip))

= A does not appear in P

P #A := T # push A # ((pop A #Q # push F) / ¬A . skip))

= programming laws

P # push T #A := T # ((pop A #Q # push F) / ¬A . skip))

= law A-1 and skip identity

P # push T #A := T

Similar reasoning shows that the right-hand branch of the conditional reduces to:

Q # push F #A := F

Therefore we can rewrite the RHS as:

4 NORMAL FORM REDUCTION 21

var A • (P # push T #A := T) / cond . (Q # push F #A := F) rav

= laws D-2 and D-5

(P # push T # var A •A := T rav) / cond . (Q # push F # var A •A := F rav)

= laws D-4, D-3 and skip identity

(P # push T) / cond . (Q # push F)

We note that cond should not involve stack variables. This is insured by the fact
that the stack is “invisible” to the programmer, as it is a structure generated during the
compilation process.

We now deal with loops: we have to transform the standard loop constructor into a
quantum, but equivalent, operator.

4.2.1 Quantum loops

In this section we shall define, by means of recursion, a possible quantum loop constructor
and show that such a constructor refines the standard loop.

We start by defining the “standard” way to evaluate boolean functions via quantum
operators.

Definition. Let b:Bn → B be a boolean function. We define:

∀i:Bn, j:B • γb(δi, δj) =̂ δ(j�b(i))

where � denotes standard exclusive-or.

Function γb links standard predicates with their quantum implementation, in the sense
precised by the next theorem:

Theorem 4.2. Let b:Bn → B be a boolean function. Then:

∀i:Bn • b(i) = (γb(δi, δ0) = δ1)

Proof. We start reasoning from the RHS:

(γb(δi, δ0) = δ1)

= definition of γb

(δ(0�b(i)) = δ1)

= XOR property

(δb(i) = δ1)

= logic

b(i)

4 NORMAL FORM REDUCTION 22

Next we define the quantum operator for evaluating boolean functions.

Definition. Let b:Bn → B be a boolean function. We define:

Γb

∑
i:Bn

δi ⊗
∑
j:B

δj

 =̂
∑
i:Bn

∑
j:B

(δi ⊗ γb(δi, δj)) .

The definition of Γb is readily shown to be linear and unitary: it is thus a feasible
quantum operator. We are mainly interested in the particular case of δ0:q(B) because:

Γb

(∑
i:Bn

δi ⊗ δ0

)
=
∑
i:Bn

δi ⊗ δb(i)

that is, we can evaluate a condition on a superposition of input values.
We now define the quantum version of the controlled-U operator defined in the previous

section.

Definition. Let Q be a quantum operator over q(Bn). We define:

Cu(Q)

∑
i:Bn

δi ⊗
∑
j:B

δj

 =̂
∑

i:Bn,j:B

(
Qj(δi)⊗ δj

)
,

where Q1 = Q and Q0 is defined to be the identity operator.

Again, that definition of Cu satisfies linearity and unitarity. We note that when the
right-hand qureg is a standard basis state, then Cu reduces to the standard controlled-U
operator. This argument is formalised in the next theorem.

Theorem 4.3. Let χ:q(Bn) be a qureg and Q a quantum operator over q(Bn). Then: var ψ:δ(B)•
χ, ψ := Cu(Q)(χ⊗ ψ)

rav

 =

 var ψ:δ(B)•
C(ψ = δ1, χ := Q(χ))

rav

 .
Proof. We start reasoning from the LHS:

LHS

= laws D-8, S-2

var ψ:δ(B)•
(ψ := δ0 # χ, ψ := Cu(Q)(χ⊗ ψ)) 2 (ψ := δ1 # χ, ψ := Cu(Q)(χ⊗ ψ))

rav

= combine assignment (law A-2)

var ψ:δ(B)•
(χ, ψ := Cu(Q)(χ⊗ δ0)) 2 (χ, ψ := Cu(Q)(χ⊗ δ1))

rav

= definition of Cu

4 NORMAL FORM REDUCTION 23

var ψ:δ(B)•
(χ, ψ := χ⊗ δ0) 2 (χ, ψ := Q(χ)⊗ δ1)

rav

= decompose tensor product (χ, ψ not entangled)

var ψ:δ(B)•
(ψ := δ0 # χ := χ) 2 (ψ := δ1 # χ := Q(χ))

rav

= remove vacuous assignment

var ψ:δ(B)•
(ψ := δ0) 2 (ψ := δ1 # χ := Q(χ))

rav

= definition of conditional and logic

var ψ:δ(B)•
(ψ := δ0 # (χ := Q(χ) / ψ = δ1 . skip)) 2 (ψ := δ1 # (χ := Q(χ) / ψ = δ1 . skip))

rav

= definition of C

var ψ:δ(B)•
(ψ := δ0 # C(ψ = δ1, χ := Q(χ)) 2 (ψ := δ1 # C(ψ = δ1, χ := Q(χ))

rav

= laws S-2, D-8

var ψ:δ(B)•
C(ψ = δ1, χ := Q(χ))

rav

=

RHS

Finally, we present our quantum loop constructor.

Definition. Let b:Bn → B be a boolean function, χ:q(Bn) a qureg and Q a quantum
operator over q(Bn). We define:

qloop(b, χ,Q) =̂ µX.


var ψ:q(B)•
ψ := δ0#
χ, ψ := Γb(χ⊗ ψ)#
χ, ψ := Cu(Q #X)(χ⊗ ψ)

rav


where µ denotes the recursion operator.

Unitarity of qloop follows from the unitarity of Γb and Cu. The assignment ψ := δ0

does not pose any problem, since it might be thought of as a variable initialisation not
performed by the quantum hardware.

4 NORMAL FORM REDUCTION 24

The following theorem states that qloop is, with respect to basis states, a valid refine-
ment for loops with bodies made of quantum operators. This kind of “semi-classical” loop
arises in the “quantumisation” of classical loops.

The program state is now represented by a qureg. In fact, since we are transforming
classical code into quantum code, a qureg over δ(Bn) suffices.

The guard of the loop has to be changed accordingly: it is implemented through the
γb operator defined before. If b:Bn → B is the guard of the loop, then via δ standard
state i:Bn is mapped to δi:δ(B

n) and, by means of theorem 4.2, condition b(i) becomes
γb(δi, δ0) = δ1.

We stress again the requirement that the body of the “semi-classical” loop must be
the “quantumisation” of its classical counterpart. This is formalised by requiring that the
corresponding quantum operator is closed over the set of standard basis states δ(Bn).

Theorem 4.4. Let b:Bn → B be a boolean function, χ:δ(Bn) a qureg and Q a quantum
operator over δ(Bn). Then: while γb(χ, δ0) = δ1 do

χ := Q(χ)
od

 v qloop(b, χ,Q) .

Proof. We reason from the RHS (we drop arguments for simplicity):

qloop

= fixed-point theorem

var ψ:q(B)•
ψ := δ0#
χ, ψ := Γb(χ⊗ ψ)#
χ, ψ := Cu(Q # qloop)(χ⊗ ψ)

rav

= combine assignments (law A-2)

var ψ:q(B)•
χ, ψ := Γb(χ⊗ δ0)#
χ, ψ := Cu(Q # qloop)(χ⊗ ψ)

rav

= definition of Γb

var ψ:q(B)•
χ, ψ := χ⊗ γb(χ, δ0)#
χ, ψ := Cu(Q # qloop)(χ⊗ ψ)

rav

= remove vacuous assignment

var ψ:q(B)•
ψ := γb(χ, δ0)#
χ, ψ := Cu(Q # qloop)(χ⊗ ψ)

rav

4 NORMAL FORM REDUCTION 25

= theorem 4.3

var ψ:q(B)•
ψ := γb(χ, δ0)#
C(ψ = δ1, (Q # qloop))

rav

= definition of C

var ψ:q(B)•
ψ := γb(χ, δ0)#
(χ := (Q # qloop)(χ)) / ψ = δ1 . skip

rav

= law A-1 and skip identity

var ψ:q(B)•
(ψ := γb(χ, δ0) # χ := (Q # qloop)(χ)) / γb(χ, δ0) = δ1 . (ψ := γb(χ, δ0))

rav

w remove initialisation (laws D-2,D-9)

var ψ:q(B)•
(χ := (Q # qloop)(χ)) / γb(χ, δ0) = δ1 . skip

rav

= reduce scope (law D-5)

var ψ:q(B) • rav#
(χ := (Q # qloop)(χ)) / γb(χ, δ0) = δ1 . skip

= law D-3 and skip identity

(χ := (Q # qloop)(χ)) / γb(χ, δ0) = δ1 . skip

= sequential composition

(χ := Q(χ) # qloop) / γb(χ, δ0) = δ1 . skip

= fixed-point theorem

while γb(χ, δ0) = δ1 do
χ := Q(χ)

od

=

LHS

We note that we could have derived the same result using the reversible rules set out
in [27], as we did for the conditional. However, in this case that route is longer: from a
classical loop one starts by developing the reversible loop; then it is quite simple to prove

5 INTRODUCING MACHINE STATE 26

that:  while b do
Sr # push T

od

 v
 var x:B•

µX.(x := b # C((Sr # push T #X), x))
rav

 .
The last step is to replace the assignment x := b with the γb operator and the controlled
operation with the Cu operator. For simplicity we decided to give directly the quantum
implementation. One could of course give that implementation for the conditional, as well.

4.3 Normal form for qGCL programs

We are thus in a position to give the theorem which relates a source program with a
simple normal form. qGCL programs are transformed according to theorem 3.8 and we
can directly use Hoare et al.’s theory without modifications because:

• probabilistic choice is split into a quantum computation followed by a conditional,
already treated by Hoare et al.;

• code in quantum procedures is compiled in terms of unitary evolution (section 4.2);

• unitary evolution and finalisation are compiled into sequences of simple assignments
(primitives ui and oj) directly executable by the quantum hardware.

Theorem 4.5. If Q is a program in the form of R in theorem 3.8, then:

var v,A •Q rav v P,A, v : [P = s,R, P = f]

where R =̂ (2s6k<fP = k → Rk) and Rk is an assignment directly implementable as a
single machine instruction.

Proof. See Hoare et al.’s paper [10] for the proof and the compilation rules which define
assignments Rk.

5 Introducing machine state

The simple normal form introduced by theorem 4.5 does not represent compiled code
yet, as it still features symbolic identifiers, i.e. variables. The purpose of this section is to
provide a correct method for replacing variables by their numeric addresses in the machine
memory M . We use Hoare et al.’s work without any modification, since we have shown
how to reduce a qGCL source program into a simple normal form. In the following we
give a brief explanation of their arguments.

A symbol table can be thought as a (total, injective) function Ψ which maps each
variable name of the program into the address of the corresponding location in M , so that
M [Ψ(x)] is the memory location holding the value for variable x. Hoare et al. [10] show
the correctness of the syntactic substitution of program variable x with M [Ψ(x)].

Next they show how to combine all the preceding theorems to fulfil the compiling task.
Consider a source program Q with variables x1, . . . , xn. By theorem 3.8 we refine Q by

6 EXAMPLE 27

a program Q′ which contains only simple expressions. Then, theorem 4.5 shows how to
write a simple normal form for Q′:

var v,A •Q′ rav v P,A, v : [P = s,R, P = f]

where R =̂ (2s6k<fP = k → Rk) and Rk is an assignment directly implementable as a
single machine instruction.

By means of the symbol table Ψ we perform the necessary link between program
variables and addresses in memory M . For s 6 k < f we define:

m[k] =̂ Rk[M [Ψ(x1)]\x1, . . . ,M [Ψ(xn)]\xn] .

We are now ready to write the simple normal form which describes the low-level be-
haviour of program Q′:

var P,A•
P := s#
while (s 6 P < f) do m[P] od#
: [true, P = f]

rav .

6 Example

In this section we exemplify the use of some compilation rules by applying them to a
simple quantum program.

Consider the following standard procedure for natural exponentiation:

proc exp(value x, y:Bk # result χ:Bn) =̂
var •
χ := 1#
while y > 0 do
χ, y := χ · x, y − 1

od
rav.

Procedure exp computes xy and returns the result in variable χ. Since in this paper
we do not deal with compilation of data structures, we directly code naturals with bit
registers. We also assume that n is big enough to contain the outcome of the computation
(given k, then n ≥ k · (2k − 1)).

We want to use procedure exp as a quantum procedure, so that it is possible to compute
exponentiation on quregs in a superposition of standard states. For this purpose, we have
first to map classical states (via Dirac δ) to their quantum analogue and then to compile
the code into a quantum implementation, by means of the techniques set out. We simply
replace proc by qproc and let the compiler doing all the necessary type changes, as
explained in section 2.5. Procedure exp now becomes qexp:

qproc qexp(value result x, y:δ(Bk) # value result χ:δ(Bn)) .

6 EXAMPLE 28

As explained in section 4.2, the simple assignments constituting the body of exp are
readily compiled by means of the quantum primitives for mathematical-logic operations.
In our case we need a multiplication operator Mul(χ, ψ), a decrement operator Dec(χ)
and a swap operator Swap(χ, ψ). Initialisation χ := 1 is readily modelled via the Dirac δ
map (this may be viewed as a trivial example of quantum data structures compilation).
Quantum procedure qexp is:

qproc qexp(value result x, y:δ(Bk) # value result χ:δ(Bn)) =̂
var •
χ := δ1#
while (y > 0) do
χ, x, y := Mul(χ, x), Dec(y)

od
rav .

We note that condition (y > 0) should be more properly written as (δ−1(y) > 0), since
now y is a qureg of type δ(Bk). We prefer the former notation for clarity reasons.

We now write a simple quantum program which uses qexp:

E =̂

 var r:δ(Bn) # a, b:δ(Bk) •
qexp(a, b, r)

rav


We now apply the techniques developed to get a version of program E which looks

closer to an hypothetical quantum hardware implementation. For simplicity we do not
deal with simplification of standard code (introduction of register variable A, etc.).

E

= lemma 3.7 (procedure call)

var r:δ(Bn) # a, b:δ(Bk) •
var χ:δ(Bn) # x, y:δ(Bk) •

x, a := a, x#
y, b := b, y#
χ, r := r, χ#
χ := δ1#
while (y > 0) do
χ, x, y := Mul(χ, x), Dec(y)

od#
a, x := x, a#
b, y := y, b#
r, χ, := χ, r

rav
rav

= enlarge scope

6 EXAMPLE 29

var r, χ:δ(Bn) # a, b, x, y:δ(Bk) •
x, a := a, x#
y, b := b, y#
χ, r := r, χ#
χ := δ1#
while (y > 0) do
χ, x, y := Mul(χ, x), Dec(y)

od#
a, x := x, a#
b, y := y, b#
r, χ, := χ, r

rav

= compose assignments and introduce Swap

var r, χ:δ(Bn) # a, b, x, y:δ(Bk) •
x, a, y, b, χ, r := Swap(x, a), Swap(y, b), Swap(χ, r)#
while (y > 0) do
χ, x, y := Mul(χ, x), Dec(y)

od#
x, a, y, b, χ, r := Swap(x, a), Swap(y, b), Swap(χ, r)

rav

= theorem 4.2 (substitute boolean condition)

var r, χ:δ(Bn) # a, b, x, y:δ(Bk) •
x, a, y, b, χ, r := Swap(x, a), Swap(y, b), Swap(χ, r)#
while (γ(y>0)(y, δ0) = δ1) do

χ, x, y := Mul(χ, x), Dec(y)
od#
x, a, y, b, χ, r := Swap(x, a), Swap(y, b), Swap(χ, r)

rav

v theorem 4.4 (introduce qloop)

var r, χ:δ(Bn) # a, b, x, y:δ(Bk) •
x, a, y, b, χ, r := Swap(x, a), Swap(y, b), Swap(χ, r)#
qloop ((y > 0), χ⊗ x⊗ y,Mul(χ, x)⊗Dec(y)) #
x, a, y, b, χ, r := Swap(x, a), Swap(y, b), Swap(χ, r)

rav

We compiled program E into a program containing quantum transformations and
quantum data structures only: that program is thus executable by quantum hardware. We
note that our refinement techniques prove that quantum code refines standard code with
respect to quantum basis states. It would be of course not possible to prove refinement for
general quregs, as classical computation does not allow superposition of standard states.

7 CONCLUSIONS 30

7 Conclusions

The normal-form approach to compilation is divided into three steps: simplification of
expressions, reduction to normal form and introduction of machine state.

In the first step we showed how to simplify non-standard qGCL constructs such as
finalisation and probabilistic choice. To this end we extended Hoare et al.’s work intro-
ducing some algebraic laws satisfied by the probabilistic choice constructor and we gave
simplification rules for finalisation, probabilistic choice and procedures.

In the second step we introduced a very simple quantum architecture which fits into
Hoare et al.’s computing model. That architecture seems to pose minimum requirements
for universal quantum computing but it is currently unclear on which architecture quantum
computers will be based upon. Also, it might be the case that quantum computers will
be built using special-purpose quantum hardware, a view enforced by the low number
of quantum algorithms developed so far. However, the normal-form approach exposed
remains valid independent of the quantum architecture chosen.

The third and last step involves the substitution of symbolic identifiers (i.e. variables)
by numeric addresses of memory locations. Here we apply directly Hoare et al.’s theory,
because qGCL programs are reduced to normal form by means of the second step of
compilation.

Future work on this approach includes the study of a more efficient quantum imple-
mentation of the reversible loop. Furthermore, we did not discuss any compilation problem
relative to quantum data structures or any efficiency issue.

8 Acknowledgements

The author would like to thank Jeff Sanders for suggesting the use of the normal-form
approach for compiler design and for commenting a draft of this paper. The author would
also like to thank the anonymous referees for their useful suggestions.

This work has been done while at the Oxford University Computing Laboratory (UK),
with the financial support of the Engineering and Physical Sciences Research Council (UK)
and Consiglio Nazionale delle Ricerche (Italy).

References

[1] Adriano Barenco. A universal two-bit gate for quantum computation. Proceedings of
the Royal Society of London A, 449:679–683, 1995.

[2] Adriano Barenco et al. Elementary gates for quantum computation. Physical Review
A, 52(5):3457–3467, 1995.

[3] D. Beckman, A.N. Chari, S. Devabhaktuni, and J. Preskill. Efficient networks for
quantum factoring. Physical Review A, 54(2):1034, 1996.

[4] J. Bowen, H. Jifeng, and I. Page. Hardware compilation. In J. Bowen, editor, Towards
Verified Systems, chapter 10, pages 193–207. Elsevier, 1994.

REFERENCES 31

[5] D. Deutsch, A. Barenco, and A. Ekert. Universality in quantum computation. Pro-
ceedings of the Royal Society of London A, 449:669–677, 1995.

[6] David Deutsch. Quantum computational networks. Proceedings of the Royal Society
of London, A425:73–90, 1989.

[7] E. W. Dijkstra. Guarded commands, nondeterminacy and the formal derivation of
programs. CACM, 18:453–457, 1975.

[8] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6/7):467–488, 1982.

[9] Richard P. Feynman. Quantum mechanical computers. Foundations of Physics,
16(6):507–531, 1986.

[10] C.A.R. Hoare, He Jifeng, and A. Sampaio. Normal form approach to compiler design.
Acta Informatica, 30:701–739, 1993.

[11] Chris J. Isham. Lectures on quantum theory. Imperial College Press, 1997.

[12] H. Jifeng, A. McIver, and K. Seidel. Probabilistic models for the guarded command
language. Science of Computer Programming, 28:171–192, 1997.

[13] Annabelle McIver and Carroll Morgan. Partial correctness for probabilistic demonic
programs. Technical report, Oxford University Computing Laboratory, 2000. To
appear in Acta Informatica.

[14] Graeme Mitchison and Richard Jozsa. Counterfactual computation. Proceedings of
the Royal Society of London A, 457:1175–1193, 2001.

[15] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM
Transactions on Programming Languages and Systems, 18(3):325–353, May 1996.

[16] Carroll Morgan. Programming from Specifications. Prentice-Hall International, 1994.

[17] Carroll Morgan and Annabelle McIver. pGCL: formal reasoning for random algo-
rithms. South African Computer Journal, 22:14–27, 1999.

[18] Micheal A. Nielsen and Isaac L. Chuang. Quantum computation and quantum infor-
mation. Cambridge University Press, 2000.

[19] Ian Page. Constructing hardware-software systems from a single description. Journal
of VLSI Signal Processing, 12(1):87–107, 1996.

[20] M. Reed and B. Simon. Methods of Mathematical Physics. I:Functional Analysis.
Acamedic Press, 1972.

[21] J. W. Sanders and P. Zuliani. Quantum programming. Mathematics of Program
Construction, Springer-Verlag LNCS, 1837:80–99, 2000.

[22] Benjamin Schumacher. Quantum coding. Physical Review A, 51(4):2738–2747, 1995.

A BASIC QUANTUM MECHANICS 32

[23] John von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton
University Press, 1955.

[24] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,
299(5886):802–803, 1982.

[25] Takeo Yokonuma. Tensor spaces and exterior algebra. American Mathematical Soci-
ety, 1992.

[26] Paolo Zuliani. Formal reasoning for quantum mechanical nonlo-
cality. Technical Report RR-01-05, Oxford University Comput-
ing Laboratory, 2001. Submitted for publication. Available at
http://web.comlab.ox.ac.uk/oucl/research/areas/probs/bibliography.html.

[27] Paolo Zuliani. Logical reversibility. IBM Journal of Research and Development,
45(6):807–818, 2001.

[28] Paolo Zuliani. Quantum Programming. PhD thesis, Oxford University Computing
Laboratory, 2001. Available at http://www.comlab.ox.ac.uk.

A Basic quantum mechanics

To support our formalism we rely on von Neumann’s approach to quantum mechanics [23],
that is the theory of linear operators over Hilbert spaces. It is a well founded theory, since
in nearly seventy years there has not been any discrepancy between theoretical predictions
and experimental results.

Among its advantages is the uniform treatment given to observation and state evolu-
tion, which are treated as subclasses of linear operators. Furthermore, it is able to express
in a formal way any quantum system, thus helping to carry out correct reasoning.

A good self-contained exposition of this theory can be found in [11] (it does not cover
infinite quantum systems, but they require many mathematical subtleties and here we
need finite systems only).

A.1 Hilbert spaces

A Hilbert space H is a vector space equipped with a scalar product making it a complete
inner product space. Here we consider only complex vector spaces Cn, for n:N. The scalar
product is therefore the application 〈·, ·〉:Cn ×Cn → C defined by:

〈ψ, φ〉 =̂
∑

06i<n

ψ∗i φi

where ψi is the i-th component of ψ:Cn, and z∗ is the complex conjugate of z:C.

The length of a vector ψ is defined ‖ψ‖ =̂ 〈ψ,ψ〉
1
2 ; ψ is normalised if ‖ψ‖2 = 1. The

n-dimensional unit sphere is the set Cn1 =̂ {ψ:Cn • ‖ψ‖2 = 1}. If f :A → C for some set
A, the square norm of f is ‖f‖2 =̂

∑
a:A |f(a)|2.

A BASIC QUANTUM MECHANICS 33

Two vectors ψ, φ are said to be orthogonal if 〈ψ, φ〉 = 0, written ψ ⊥ φ. Two linear
subspaces E,F of a Hilbert space H are said to be orthogonal if ∀ψ:E, φ:F • ψ ⊥ φ; we
shall write E ⊥ F .

The orthogonal complement of a linear subspace E of H is the set of all vectors per-
pendicular to it:

E⊥ =̂ {ψ:H • ∀φ:E, φ ⊥ ψ}.

It is also a linear subspace of H.
A function A:H → H is also called an operator. The adjoint (or hermitian conjugate)

of a linear operator A is the operator A† defined by:

∀ψ, φ:H • 〈ψ,A†φ〉 = 〈Aψ, φ〉.

A linear operator A is self-adjoint (or hermitian) if A = A†. In the case of infinite-
dimensional Hilbert spaces there is a difference between self-adjointness and hermitianity,
but since here we deal only with finite spaces we consider them equivalent. Also, we should
check that A† defined above is actually an operator (which it is, as a matter of fact). All
these mathematical details can be found in Reed and Simon’s book [20] for example.

In von Neumann’s approach to quantum mechanics the state of a physical system is
modelled by a vector of some n-dimensional complex Hilbert space and state evolution is
modelled by linear operators. As a consequence any quantum operator on H can always
be written as a n× n complex matrix.

Let A be a n × n matrix representing a quantum operator A. Then, with respect to
an orthonormal basis, the elements of the matrix representing A† satisfy:

∀i, j:{1, . . . , n} • (A†)ij = A∗ji.

We note that if A is self-adjoint then Aij = A∗ji.
Quantum transformations satisfy also another property: they are unitary. Such an

operator guarantees the existence of the inverse operator and preserves scalar products,
that is for an operator U unitary we have:

∀ψ, φ:H • 〈Uψ,Uφ〉 = 〈ψ, φ〉

In terms of matrices it means that the matrix U modelling the evolution of the system
must satisfy:

U · U † = U † · U = 1

where 1 is the identity matrix of appropriate size. The set of complex unitary matrices
forms a group with the usual matrix multiplication.

A (non-zero) vector ψ:H is an eigenvector of an operator A with eigenvalue a:C if:

Aψ = aψ.

In quantum mechanics an observable is represented by a self-adjoint operator and the
measurable values are exactly the eigenvalues of that operator. In physics there are three
famous matrices, the Pauli spin matrices Sx, Sy and Sz:

Sz =̂
1

2

(
1 0
0 −1

)
, Sx =̂

1

2

(
0 1
1 0

)
, Sy =̂

1

2

(
0 −i
i 0

)
,

A BASIC QUANTUM MECHANICS 34

which represent the spin observables in the three Euclidean spatial directions for a spin-1
2

particle; their eigenvalues are ±1
2 , hence their name.

The fundamental spectral theorem [11] for finite-dimensional Hilbert spaces states that
the set of all eigenvectors of a self-adjoint operator is an orthonormal basis set for H.

For ψ:H we write Pψ for the projector onto the one-dimensional subspace spanned by
vector ψ:

∀φ:H • Pψ(φ) =̂
ψ

‖ψ‖2
· 〈ψ, φ〉.

For an observable O (with discrete eigenvalue spectrum) and eigenvalue λ we denote by
EO,λ the set of eigenvectors associated to eigenvalue λ; we write P λO for the projector
associated to eigenvalue λ:

P λO =̂ P(
∑
v:EO,λ

v) .

The rules of quantum theory state that if the state of a system is described by some
normalised vector ψ:H then, if a measurement of observable O is made, the probability
that the result will be the particular eigenvalue λ is:

Prob(O = λ | ψ) = 〈ψ, P λOψ〉.

By the spectral theorem we deduce that the family of eigenspaces of an observable
O is a partition for H and we have seen that to each eigenspace there is an associated
projector P λO. A projector is a self-adjoint operator with just two eigenvalues, 0 and 1;
therefore a measurement of an observable O tells us in which subspace the state vector ψ
has “fallen”, as a consequence of the measurement process.

The probability rule written above is a special case of the following rule, which holds
even for observables with continuous eigenvalue spectrum. For observable O and nor-
malised state ψ:H, the expected result 〈O〉ψ of measuring O is:

〈O〉ψ =̂ 〈ψ,Oψ〉 .

Alternatively, one can define an observable from a family of pairwise orthogonal sub-
spaces which together span the whole space H and then consider the projector of each
subspace.

A.2 Tensor products

The state of a composite quantum system is described by the tensor product of Hilbert
spaces. Consider two complex Hilbert spaces H1,H2 of dimensions n1, n2 respectively. For
any pair of vectors ψ:H1, φ:H2, the tensor vector ψ⊗φ is given by the map (·⊗·):H1×H2 →
Cn1·n2 :

(ψ ⊗ φ)i =̂ ψi div n2φi mod n2 0 6 i < n1·n2 .

Tensor products are linear in each argument, that is:

∀α, β:C, ψ, φ:H1, χ:H2 • (αψ + βφ)⊗ χ = (αψ)⊗ χ+ (βφ)⊗ χ,
∀α, β:C, ψ, φ:H1, χ:H2 • ψ ⊗ (αφ+ βχ) = ψ ⊗ (αφ) + ψ ⊗ (βχ).

B SEMANTICS FOR PGCL 35

Multiplication by a complex number distributes across the tensor product:

∀α:C, ψ:H1, φ:H2 • α(ψ ⊗ φ) = (αψ)⊗ φ = ψ ⊗ (αφ).

Consider now the vector space Cn1·n2 : defining the scalar product 〈ψ1 ⊗ ψ2, φ1 ⊗
φ2〉 =̂ 〈ψ1, φ1〉H1〈ψ2, φ2〉H2 enable us to define a new Hilbert space H1 ⊗ H2, called the
tensor product of H1 and H2. Vectors in H1 ⊗ H2 which cannot be written as a single
product ψ⊗φ for any ψ:H1 or φ:H2, are called entangled. However, every vector inH1⊗H2

can be written as a sum of such product vectors.

The tensor product can be extended to linear operators over Hilbert spaces. Let
A1:H1 → H1 and A2:H2 → H2 be two linear operators over Hilbert spaces H1 and H2

respectively. The operator A1 ⊗A2:H1 ⊗H2 → H1 ⊗H2 is defined as:

(A1 ⊗A2)ψ1 ⊗ ψ2 =̂ (A1ψ1)⊗ (A2ψ2)

where ψ1:H1 and ψ2:H2. By linearity it is extended to any vector in H1 ⊗H2.

Since linear operators can be represented by matrices, the tensor product is readily
available for them, too. Let A = (ai,j) and B be two matrices of dimensions m × n and
p× q respectively: the tensor product A⊗B is the mp× nq matrix:

a0,0B a0,1B · · · a0,n−1B
a1,0B

...
...

am−1,0B · · · am−1,n−1B


The tensor product of matrices preserves unitarity and distributes over standard matrix

multiplication, that is for operators M,N,L, P we have:

(M ·N)⊗ (L · P) = (M ⊗ L) · (N ⊗ P).

A more rigorous treatment of tensor products for general vector spaces can be found in
[25].

B Semantics for pGCL

Semantics for pGCL can be given either relationally [12] or in terms of expectation trans-
formers [15]. We briefly present the main definitions and concepts of the transformer
model.

Definition B.1. The state x of a program P is the array of global variables used during
the computation. That is

x =̂ (v1, . . . , vn) : T1 × T2 × . . .× Tn.

The Cartesian product T1 × T2 × . . . × Tn of all the data types used is called the state
space of program P .

B SEMANTICS FOR PGCL 36

The only problem that might arise is when input and output have different types: this
is easily solved by forming a new type from their discriminated union. Therefore there is
no distinction among the type of initial, final and intermediate state of a computation:
they all belong to the same state space.

Before describing the semantic space we introduce a powerful tool: Morgan’s specifi-
cation statement [16]. It is:

x : [pre, post].

It describes a computation which changes the (possibly empty) list of variables x in such a
way that, if predicate pre holds on the initial state, termination is ensured in a state satis-
fying predicate post over the initial and final states; if pre does not hold, the computation
aborts. If there is no value for x satisfying post, the computation will terminate achieving
post miraculously. We denote an initial state by putting a dash ′ after the variable name.

Expectation-transformer semantics is an extension of the predicate-transformer one.
An expectation is a [0, 1]-valued function on a state space X and may be thought of as a
“probabilistic predicate”. The set Q of all expectations is defined:

Q =̂ X → [0, 1].

Expectations can be ordered using the standard pointwise functional ordering for which
we shall use the symbol V. Standard predicates are easily embedded in Q by identifying
true with expectation 1 and false with 0. For standard predicate p we shall write [p] for
its embedding.

The pair (Q,V) forms a complete lattice, with greatest element the constant expec-
tation 1 and least element the constant expectation 0. For i, j:Q we shall write i ≡ j iff
iV j and j V i (or iW j).

The set J of all expectation transformers is defined:

J =̂ Q → Q.

In predicate-transformer semantics a transformer maps post-conditions to their weakest
pre-conditions. Analogously, expectation transformer j:J represent a computation by
mapping post-expectations to their greatest pre-expectations.

Not every expectation transformer corresponds to a computation: only the sublinear
ones do [15, 17]. Expectation transformer j:J is said to be sublinear if

∀a, b, c:R+, ∀A,B:Q • j.((aA+ bB)	 c) W (a(j.A) + b(j.B))	 c,

where 	 denotes truncated subtraction over expectations

x	 y =̂ (x− y) t 0.

where t denotes the least upper bound.
Sublinearity implies, among other properties, monotonicity of an expectation trans-

former.
The following table gives the expectation-transformer semantics for pGCL (we shall

retain the wp prefix of predicate-transformer calculus for convenience):

B SEMANTICS FOR PGCL 37

wp.abort.q =̂ 0

wp.skip.q =̂ q

wp.(x := E).q =̂ q[x\E]

wp.(R # S).q =̂ wp.R.(wp.S.q)

wp.(R / cond . S).q =̂ [cond] ∗ (wp.R.q) + [¬cond] ∗ (wp.S.q)

wp.(R 2 S).q =̂ (wp.R.q) u (wp.S.q)

wp.(R p⊕ S).q =̂ p ∗ (wp.R.q) + (1− p) ∗ (wp.S.q)

wp.(µF) =̂ least fixed point ofF :Q → Q

wp.(z : [pre, post]).q =̂ [pre] ∗ ([∀z • [post] V q])[x′\x]

where q:Q, x:X, p:[0, 1] and cond, pre, post are arbitrary boolean predicates; q[x\E]
denotes the expectation obtained after replacing all free occurrences of x in q by expression
E; u denotes the greatest lower bound; z is a sub-vector of state x and denotes the variables
the specification statement is allowed to change. In the specification statement expectation
q must not contain any variable in x′. Recursion is treated in general using the existence
of fixed points in J .

Note that binary conditional R / cond . S is a special case of probabilistic choice: it is
just R [cond]⊕ S.

For procedures we have to distinguish three cases, depending on the kind of parameter.
Consider a procedure P defined by:

proc P ({value|result|value result} f :T) =̂ body

where T is some data type. Then a call to P has the following expectation-transformer
semantics:

wp.(P (value f :T\E)).q =̂ (wp.body.q)[f\E]

wp.(P (result f :T\v)).q =̂ [(∀f • wp.body.q[v\f])]

wp.(P (value result f :T\v)).q =̂ (wp.body.q[v\f])[f\v]

where E is an expression of type T and v:T ; f must not occur free in q.
In predicate-transformer semantics termination of program P is when wp.P.true =

true, which directly translates to wp.P.1 ≡ 1 in expectation-transformer semantics.
pGCL enjoys a refinement calculus, which derives from the semantics above; when we

say that program Q refines program P , written P v Q, we mean:

P v Q =̂ ∀q:Q • wp.P.q V wp.Q.q .

C ALGEBRAIC PROGRAMMING LAWS 38

Intuitively, P v Q means that Q is at least at deterministic as P . There is a family of
sound laws [12, 17], including those for data refinement, so that the language pGCL is
embedded in a refinement calculus (some laws are reported in Appendix C).

The converse of refinement is abstraction and it is denoted by w:

P w Q =̂ ∀q:Q • wp.P.q W wp.Q.q .

When P w Q and P v Q then P and Q are equal programs and we write P = Q.
In pGCL (demonic) nondeterminism is expressed semantically as the combination of

all possible probabilistic resolutions:

wp.(P 2 Q) = u{wp.(P r⊕Q) • r:[0, 1]}.

Thus a (demonic) nondeterministic choice between two programs is refined by any prob-
abilistic choice between them:

∀r:[0, 1] • P 2 Q v P r⊕Q

originating thereby the law introduce probabilism.
Probabilism does not itself yield nondeterminism: if P and Q are deterministic (max-

imal with respect to the refinement order) then so is P r⊕Q, but for most authors in the
area of quantum computation nondeterminism means probabilism.

C Algebraic programming laws

We list a few algebraic laws which hold for pGCL programs. The proofs can be found
in [12, 15]; for a complete exposition of an algebra of programming for the Guarded-
Command Language see [10]. In the following laws we use the term e to indicate an
expression whose type is determined by the context.

Law (Id “skip identity”). (P # skip) = (skip # P) = P

Law (P-1). P 1⊕ Q = P

Law (P-2). P r⊕ Q = Q 1−r⊕ P

Law (P-3). P r⊕ P = P

Law (S-2). (P r⊕ Q) #R = (P #R) r⊕ (Q #R)

Law S-2 holds for nondeterministic choice, too.

Law (A-1). (x := e) # (P r⊕ Q) = (x := e # P) r[x\e]⊕ (x := e #Q)

Law (A-2). (x := e # x := f) = (x := f [e\x])

Law (D-2). If variable x does not appear in expression p, then:

varx • (P p⊕ Q) = (varx • P) p⊕ (varx •Q)
(P p⊕ Q) rav x = (P rav x) p⊕ (Q rav x)

C ALGEBRAIC PROGRAMMING LAWS 39

Since standard conditional is a particular case of probabilistic choice, laws S-2, A-1
and D-2 hold for that, too.

Law (D-3). varx • rav x = skip

Law (D-4). rav x = (x := e # rav x)

Law (D-5). If x is not free in Q,then:

varx •Q = Q # varx

rav x •Q = Q # rav x

Declaring a variable is equivalent to a nondeterministic assignment over the variable’s
data type.

Law (D-8). Let D be a finite data type. Then:

varx:D = varx:D • 2[x := d • d ∈ D]

The following refinement is a direct consequence of law D-8:

Law (D-9). Let e be an expression of the type of variable x, then:

varx v varx • x := e

Law D-9 means that initialising a variable will make a program more deterministic.
We now briefly introduce a well known data structure: the stack data structure. The

specifications for state and operations are, for a data type D (in terms of state x0 before
and state x after):

module stack
var x:seq D •
proc push (value f :D) =̂ x : [x = f :x0]
proc pop (result f :D) =̂ x, f : [x0 = f :x]
proc top (result f :D) =̂ (pop f # push f)

end

where seq denotes the sequence data type; there is no need of initialisation: any sequence
of type D will do.

The semantics is the usual: push just copies the content of f on the top of the stack,
whereas pop saves the top of the stack in f and then clears it; top copies in f the last
inserted value in the stack. The stack is of unlimited capacity, that is we may save as
many values as we wish.

From the definitions it easily follows that the precondition for push is true and the
precondition for pop and top is that x0 must not be empty.

For stacks we find useful the following law, whose proof can be found in [27]:

Law (ST-1). For variable v:D and expression e:D we have

(push e # pop v) = (v := e)

D QUANTUM CLONING 40

D Quantum cloning

In this section we explain the cloning problem, that is the production of a perfect copy of
some object, and derive the no-cloning theorem for quantum mechanics.

Classically, to send an unknown datum to another party, one just makes a copy of
the original and then transmits it over some medium. There is no need for the sender
to know the datum since the copying is always possible. It turns out that in quantum
mechanics it is not possible to create a perfect copy of an unknown arbitrary quantum
state, i.e. “cloning” the state, and therefore a quantum cloning operator cannot exist.
This feature of quantum theory was firstly discovered by Wootters and Zurek [24] in 1982
and it is due to the linearity of quantum mechanical operators together with the existence
of entanglement and hence the need to model combination of state spaces using tensor
product.

Before formalising the proof we distinguish two definitions of cloning: cloning element
by element (weak cloning) and uniform cloning (strong cloning). Let A be a set and
C:A×A→ A×A the putative cloning operator.

Definition. C clones weakly over A if:

∀x:A ∃y:A, (y 6= x) • C(x, y) = (x, x) .

Definition. C clones strongly over A if:

∃y:A ∀x:A • C(x, y) = (x, x) .

In quantum mechanics, weak cloning is readily ruled out since it is not reversible.
Therefore, it does not need any further investigation.

For strong cloning we first note that since in quantum mechanics composite systems
are described through tensor products instead of Cartesian products, that definition of
cloning must be modified accordingly. Let H be a finite Hilbert space and C an operator
over H⊗H, then we have:

Definition. C clones strongly over H if:

∃y:H ∀x:H • C(x⊗ y) = (x⊗ x) .

Next we have the following theorem, also known as the no-cloning theorem.

Theorem D.1 (Wootters and Zurek). Strong cloning is not possible in quantum mechan-
ics.

Proof. We shall assume the existence of quantum mechanical strong cloning operator C
and we shall prove that it leads to a contradiction. We recall that any valid quantum
operator must be linear.

We start from the quantum mechanical definition of strong cloning, omitting the
Hilbert space H for brevity. We reason:

D QUANTUM CLONING 41

∃y ∀x • C(x⊗ y) = (x⊗ x)

⇒ H vector space

∃y ∀x, a • C((x+ a)⊗ y) = ((x+ a)⊗ (x+ a))

= tensor product is linear

∃y ∀x, a • C((x⊗ y) + (a⊗ y)) = (x+ a)⊗ (x+ a)

= C must be linear

∃y ∀x, a • (C(x⊗ y) + C(a⊗ y)) = (x+ a)⊗ (x+ a)

⇒ cloning property

∀x, a • (x⊗ x) + (a⊗ a) = (x+ a)⊗ (x+ a)

= tensor product is linear

∀x, a • (x⊗ x) + (a⊗ a) = (x⊗ x) + (a⊗ x) + (x⊗ a) + (a⊗ a)

= logic

∀x, a • 0 = (a⊗ x) + (x⊗ a)

= take for example a = x 6= 0

false

However the theorem does not forbid that for some restricted subset of H it is possible
to have a strong cloning operator. In fact Feynman’s CNOT operator [9, 8] clones standard
states. The definition of CNOT is:

∀x, c:B • CNOT (x, c) =̂ (¬xc+ ¬cx, c) ,

fixing x = 0 we get that:

∀c:B • CNOT (0, c) = (c, c) ,

which satisfies the definition of strong cloning. Embedding standard bits via the Dirac δ
function (see section 2.1) enables us to have a strong cloning operator for quantum basis
states:

∀c:B • CNOT (δ0 ⊗ δc) = (δc ⊗ δc) .

However CNOT fails to clone arbitrary states. Take the state δ0 + δ1 for example:

CNOT (δ0 ⊗ (δ0 + δ1))

= logic

CNOT (δ0 ⊗ δ0 + δ0 ⊗ δ1)

= CNOT linear

CNOT (δ0 ⊗ δ0) + CNOT (δ0 ⊗ δ1)

= definition of C

D QUANTUM CLONING 42

δ0 ⊗ δ0 + δ1 ⊗ δ1

while:
(δ0 + δ1)⊗ (δ0 + δ1) = δ0 ⊗ δ0 + δ1 ⊗ δ1 + δ0 ⊗ δ1 + δ1 ⊗ δ0 .

We note that a basis change does not either diminish or augment the cloning capability
of CNOT.

Extension to basis states of n-dimensional Hilbert spaces is readily available using the
n-bit version of CNOT:

∀x, c:Bn • CNOT (x, c) =̂ (¬xc+ ¬cx, c) .

