A Formal Derivation of Grover’s Quantum Search Algorithm

Paolo Zuliani
Oxford University Computing Laboratory
Oxford, OX1 30D, UK
paolo.zuliani@comlab.ox.ac.uk

Abstract

In this paper we aim at applying established formal
methods techniques to a recent software area: quantum
programming. In particular, we aim at providing a step-
wise derivation of Grover’s quantum search algorithm. Our
work shows that, in principle, traditional software engi-
neering techniques such as specification and refinement can
be applied to quantum programs. We have chosen Grover’s
algorithm as an example because it is one of the two main
quantum algorithms. The algorithm can find with high
probability an element in an unordered array of length L
in just O(\/L) steps (while any classical probabilistic al-
gorithm needs QU (L) steps). The derivation starts from a
rigorous probabilistic specification of the search problem,
then we stepwise refine that specification via standard re-
finement laws and quantum laws, until we arrive at a quan-
tum program. The final program will thus be correct by
construction.

1. Introduction

Quantum Mechanics has been recently applied to Com-
putation with much benefit. In 1994 Shor [11] developed
a polynomial-time quantum algorithm for integer factori-
sation, while no classical algorithm is known to require
less than exponential time. In 1996 Grover [5] developed
a quantum algorithm for finding with high probability an
element in a unsorted array of length L with only O(v/L)
accesses to the array. In contrast, any classical algorithm
needs §2(L) accesses, even in the probabilistic case.

In this paper we aim at applying formal methods tech-
niques to quantum programming, a model of quantum com-
putation in which algorithms are expressed as imperative
programs. In particular, we aim at providing a stepwise
derivation of Grover’s quantum search algorithm.

Quantum algorithms make use of highly non-trivial and
counterintuitive concepts (e.g. superposition and measure-
ment) which are completely new to the standard case. It

is therefore essential, from a software engineering point of
view, to understand whether standard techniques can cope
with the quantum case. Furthermore, it is important that
those techniques support a seamless integration of standard
code and quantum code. That is because quantum algo-
rithms are not just “pure quantum”, rather, they may also
employ standard processing. For example, Shor’s factor-
ing algorithm makes substantial use of standard number-
theoretic processing, while the quantum part is in fact an
efficient subroutine for computing the order of an integer
modulo m (the order r of modulo m is the least integer
such that z" =1 mod m).

In this paper we have chosen to analyse Grover’s algo-
rithm because it uses a central concept of standard program-
ming which is not used in other quantum algorithms: it-
eration. We start from a formal probabilistic specification
of the search problem: finding the required element with
probability at least 1 — % where L is the length of the ar-
ray. Next, we stepwise refine such specification via standard
refinement laws and quantum laws until we reach a feasi-
ble quantum program, which will therefore be correct by
construction. Our work shows that, in principle, traditional
software engineering techniques such as specification and
refinement can be applied to the quantum case, thus provid-
ing an unique environment for both standard and quantum
programming.

The framework is provided by qGCL [10], a program-
ming language for quantum computation developed as a
superset of the probabilistic guarded-command language
pGCL [9]. qGCL inherits a rigorous semantics and an as-
sociated refinement calculus (see for example [8, 7]), which
include program refinement, data refinement and combina-
tion of specifications with code. qGCL has been success-
fully used to describe all known quantum algorithms and
also to derive Deutsch-Jozsa’s algorithm from its specifica-
tion. That algorithm is simpler than Grover’s, and it does
not feature iteration (although it employs a more compli-
cated final step). Also, its specification is just (demoni-
cally) nondeterministic, while Grover problem’ specifica-
tion combines nondeterminism and probabilism.

As far as previous work is concerned, that of Butler and
Hartel [3] is particularly relevant: they showed how to use
the semantics of pGCL to derive the success probability of
Grover’s algorithm. In particular, that is computed as the
pre-expectation of a suitable post-expectation (i.e. finding
the required element) applied to Grover’s algorithm. Such
an approach is of course tailored for proving the correctness
of an algorithm, rather than developing a correct implemen-
tation from a specification. For a survey and bibliography
of quantum programming languages see [4].

We begin by giving a short presentation of the features
of qGCL (a full introduction can be found in [10]). Then,
we present Grover’s algorithm [5] using qGCL. Finally, we
outline our derivation of the algorithm.

2. Quantum programming language GCL

2.1. Quantum types

Transformation ¢ maps a classical bit register data type
to its quantum analogue. We define the type B = {0, 1},
which we will treat as booleans or bits, depending on
convenience. A classical register of size n:IN is a vec-
tor of n booleans. The type of all registers of size n is
then defined to be the set of boolean-valued functions on
{0,1,...,n—1}:

B" = {0,1,...,n— 1} — B.

The quantum analogue of IB” is the set of complex-valued
functions on B™ whose squared modulus sum to 1:

gB") = {x:B" —C |) |x(@)*=1}.
z:B™

An element of ¢(IB) is called a qubit and that of ¢(IB™) a
qureg. The numbers x(x) are called amplitudes. Classi-
cal state is embedded in its quantum analogue by the Dirac
delta function:

The range of 6, {4, | 2:IB"}, forms a basis for quantum
states, that is:

Vx:q(B™) e x = Y x(2)6. -
x:B"

The Hilbert space B® — C (with the structure making
it isomorphic to ©2") is called the enveloping space of
q(BB™). The usual scalar product becomes the application
(-,):q(B™) x q(B™) — C defined by:

(W,) = > (@) é(x)

z:Bn

where z* is the complex conjugate of z:C. The length of
is defined ||¢| = (¢, wﬁ; all quregs have thus length 1.

The state of a composite quantum system is given by the
tensor product of the states of the single systems, but since
we shall not need it here, we do not define it. A complete
definition can be found in [10].

2.2. qGCL

gGCL is an extension of pGCL, which in turn extends
Dijkstra’s guarded-command language with a probabilis-
tic choice constructor in order to address probabilism. A
guarded-command language program is a sequence of as-
signments, skip and abort manipulated by the standard
constructors of sequential composition, conditional selec-
tion, repetition and nondeterministic choice. The syntax of
pGCL is:

prg = skip do nothing
| abort abortion
|z:=F assignment
| prgspryg sequential composition
| do b — prg od iteration
| prg prg conditional selection
| prg PP prg probabilistic choice
| prgMprg demonic choice

| var v:D e prgrav variable declaration and
local block

where b is a predicate and D a datatype; the probabilistic
combinator ,® executes its LHS (RHS) with probability p
(1—p). Both probabilistic and nondeterministic choice may
be written using a prefix notation. Let [(P;,r;) | 0 < j <
m | be a finite indexed family of (program, number) pairs
with) T = 1, then the probabilistic choice in which P; is
chosen with probability 7, is written in the form: [P; @ r; |
0 < j < m]. For nondeterministic choice the notation is
similar.

A quantum program is a pGCL program invoking quan-
tum procedures and the resulting language is called qGCL.
Quantum procedures can be of three different kinds: Ini-
tialisation (or state preparation) followed by Evolution and
finally by Finalisation (or observation).

Initialisation is a procedure which simply assigns to its
qureg state the uniform square-convex superposition of all
standard states

Vx:q(B") e In(x) = (x = \/127 > 5x> :
z:B”

Initialisation is efficiently implemented by the Hadamard
trasform (see [10] for more details).
Quantum-mechanical systems evolve over time under

the action of unitary transformations:

U:q(B™) — ¢(IB™), linear
U unitary iff ||Us] = ||¢| iff UUT =UTU =1

where I is the identity transform and U is the conjugate
transpose of U (in matrix representation). Unitary trans-
formations thus preserve the length of the state. Evolution
consists of iteration of unitary transformations on quantum
state. In our formalism, evolution of qureg x under unitary
operator U is described by the assignment:

x :=Ux.

The content of a qureg can be read (measured) through
quantum procedure Finalisation and suitable observables.
The simplest observable - and the one we shall use - is the
so-called diagonal observable. The effect of diagonal Final-
isation on qureg x:q(IB™) is to “reduce” x to state §; with
probability |x(7)|?. The measurement returns the value j,
as well. In our notation we write:

Fin (r,x) = [(r,x=7j,6;) @ [x()PP [0<j<m] .

A more general form of Finalisation is presented in [10].
2.3. Semantics

Semantics for pGCL (and in turn for qGCL) can be given
either relationally [6] or in terms of expectation transform-
ers [9]. The former relates each initial state to a set of final
distributions. The latter extends pre- and post-conditions to
pre- and post-expectations: real-valued random variables.
In either case refinement P C () means that () is at least as
deterministic as P . The two models are related by a Galois
connection embedding the relational in the transformer [9].

In pGCL (demonic) nondeterminism is expressed se-
mantically as the combination of all possible probabilistic
resolutions

PNQ =P, Q|0 r<1}. (1)

Thus a (demonic) nondeterministic choice between two pro-
grams is refined by any probabilistic choice between them

Vr:0,1]e PMQC P, ®Q . 2)
We introduce another useful notation: P >, @ @ is equal

to P with probability at least r and otherwise is equal to Q.
Its definition is:

PooQ=1{(Py®»Q)|r<p<1}. 3)

It can be proved that P »,® Q = (P,® Q)N P.

3. Grover’s quantum search algorithm

The search problem can be defined as: given an array
f of 2" bits containing a single 1, locate it - the solution
is thus f~1(1). The complexity of the problem, measured
in number of accesses to the array, is clearly Q(2™) for
any classical algorithm in both the worst and average case.
Grover’s ingenious quantum algorithm [5] solves the prob-
lem with high probability and with only O(1/2") accesses
in both cases - a quadratic improvement over the classical
method. However, the algorithm only succeeds with proba-
bility strictly less than 1, depending on the size of the array
and number of iterations.

Grover’s quantum algorithm can be expressed in qGCL
as:

var x:q(B™), mB" e

In(x)s
do N times —

rav

where function f:B" — IB is the array, transformation 1’
between quregs is defined pointwise to invert x about 0 if f
holds and otherwise to leave it unchanged

Ty:q(B™) — q(B™)

(Trx)(@) = (1) @x(2) = —x(z) < fx)> x(x)@
Evidently T is unitary. Transform M inverts x (pointwise)
about its average

M:q(B") — q(B")
(Mx)(z) = 2[57 Xymn X(¥)] = x(2)

and can be shown to be unitary and efficiently imple-
mentable [5]. The number of iterations NV is a function of n
of order O(v/2").

Intuitively, the algorithm works in the following way: it
starts by generating the uniform superposition of all the ba-
sis states (all the possible locations of the solution). At this
point, a measurement of the quantum register would yield
any basis state with uniform probability 27" - i.e. a uni-
formly random guess. The purpose of the loop is thus to
stepwise increase the modulus of the amplitude of the solu-
tion state towards 1, so that a measurement will return the
solution state with high probability. Remarkably, Grover’s
algorithm cannot be improved: £2(2™) accesses are provably
needed by any quantum algorithm [1]. The algorithm works
also in the case of multiple solutions: if f has s solutions

1/ 2%) . Boyer et al.
[2] generalised the algorithm to the case that s is not known.

®)

then the algorithm’s complexity is O (

More formally, the working of the algorithm can be un-
derstood geometrically, as explained by Boyer et al. [2].
The initial uniform superposition v = \/127 >, d; can be
written as:

v=4/50 4 /50

where (S)S is the set of the (non)solution indexes and
s = #S. By choosing 6 such that sing = /5+ we have
that v = 1) cos () + ¢sin (§) and

(MTy)v =1 cos (39) + ¢sin (29)

(this can be easily proved noting that Ty(ay) + bp) =
ay — b and that M = 2P, — I, where P, is the projector
over the one-dimensional space spanned by /). The effect
of Grover’s iteration body is thus a rotation by angle 6 in
the two-dimensional space spanned by ¢ and ¢. It can be
shown that the state at the k-th iteration of the body is:

2k2+ 19) + psin (2’“; 19) ©)

where by convention (MT%)? = I. In order to succeed
with high probability we have to find a suitable k for which
the state at the k-th iteration is close to ¢. Without loss of
generality we may suppose that s < 277!, and therefore

% >sin4 = /% Thisimplies thatk < |Z,/Z — 1] s0
we accordingly define:

T 2 1
N:L\/S‘QJ- ™

We note that the probability of success
~ . 2k+1
p(k) = sin? (;_ 9) ®)

is a periodic function in the number of iterations k. This
means that we will actually decrease the probability of suc-
cess if we run too many iterations. Also, we note that the
probability of success does not vary uniformly with k: when
k is close to (multiples of) the optimal value N the proba-
bility varies very slowly. It can be shown that:

(MTy)*v = 4 cos <

p(N) = (1—2%) .

In Appendix A we provide more details.

4. Derivation

Let f:B™ — B be our boolean array; we suppose that
f contains at least one (possibly more) bit at 1. By defin-
ing the set of solutions S = f~!1(1), the search problem is
just to return one element of S (the choice of which is ar-
bitrary). To formally specify the problem we use Morgan’s
specification statement [8].

The specification z : [pre, post] describes a computation
which changes the (possibly empty) list of variables x in
such a way that, if predicate pre holds on the initial state,
termination is ensured in a state satisfying predicate post
over the initial and final states; if pre does not hold, the
computation aborts. If there is no value for x satisfying post,
the computation will terminate achieving post miraculously
(i.e. the validity of post is enforced). If pre = true then we
simply write x : [post]; the initial states in post are denoted
by a (subscript.

The problem is formally specified by the program G:

G=varr:B"e r:[r:S] 5:® r:[r:S]rav (9)
where € = 5 and € = (1 — ¢), S is a non-empty, proper
subset of B™, S = IB™\ S, and without loss of generality we
suppose that s < 27~!. Informally, we are looking for an
algorithm which returns a solution with probability at least
1 — e. We observe that G can be written in an equivalent
way:

G
= definition of >@® (3)
(r:[r:S] @ r:[r:S]) M r:[rS]

= Law P-2
ri[rS] @ (r:[r:S] 1o [rS))

= Law Spec5
ri[rS] @ r:[rS VS

= logic

r:[r:S] :® r:[rB"]

where we omitted variable declarations for brevity. Infor-
mally, G requires a solution with probability exactly €, and
with probability € any outcome will do: we thus have again
that G specifies an algorithm which is correct with proba-
bility at least €. The programming laws used are reported in
Appendix B.

Before going into the derivation, we outline the main
ideas and facts which we shall use. The following lemma
shows how to implement a probabilistic choice by means of
a specification on a qureg and a Finalisation (it is not a fully
quantum program, hence the lemma’s name).

Lemma 4.1. [Quantum semi-implementation] For A C
B", A # 0 and p:[0, 1] we have
z:[1A] @ x: (A C
var x:q(B") e x : [[x|I4 = p] 3 Fin(z, x) rav

where [[x[[% = 32,4 IX(0)[*.
Proof. We reason from the LHS:

z: @A), x:[1:A]

C introduce nondeterminism (Law D-1)
Mz:=j | jeA] ,@ Nz:=k | ke A
C (2) and distributions u, v over A, A
[z:=jQu;|j€EA ,® [z:=kQuy | k€A

= recombine probabilities (Law P-1)

x:=1Qp; | €B",p;, Epu; Qi € Ar> (1 — p)uy)
=, arbitrary, so p distribution over B"|}_,_, pi = p
=1Qp; [> cap; =D

introduce and initialise qureg x (Law D-2)
X =140, Qp; [i €B", > . 4 pj = D)

data refinement with p; = |x(%)]

m =

]

2

M

z,x = 1,0; @ [x())] | [Ix]I% = p]

assumption as specification

X Il = pls [, x =4, 6; @ |x(i)]?]

definition of Fin

x ¢ [Ix|% = p]s Fin(z, x)
O

We now explain how to derive the iteration’s body of the
quantum search algorithm.

The general “trick” of a quantum algorithm is to unitar-
ily (and efficiently) increasing the amplitude of the basis
state corresponding to the solution of the problem, so that a
measurement has a high probability of returning that state.
Such a transformation must first of all be linear, so that we
are looking for some operator U:q(IB") — ¢(B™) of the
following shape:

Ux(i) = Wx + ex(i) (10)

where W:¢(BB") — C and c a fixed complex such that |¢| =
1. We now have to find out which W’s are allowed by the
unitarity constraint.

Lemma 4.2. Suppose U:q(B™) — ¢(B™) is defined
Ux(i) = Wx + cx(i), where W:q(B") — C is a lin-
ear application and ¢ € C fixed, |c| = 1. Then U is unitary

iff all the coefficients of W are equal to w:

S(w) € [P, =0
—R(e)E/R(c)2—d2S(w)2—2dS (c) S (w)
R(w) = “ROEVREPE
where d = 2.

Proof. Since W must be a scalar, then W mustbe a 1 x 2"
matrix, i.e. a row vector of elements w;. By defining the
operator T'x (i) = Wy we have that U =T +cl and T}; =
w;. We now reason:

U unitary

= definition of unitary and U
(T+cDH(T+cl)=1

= linear algebra
TIT + Tt + T =0

= logic
Vi, j e (I1T)ij + cI), + ¢*Ti; = 0

= linear algebra

Vi, j o (X TinThy) + T + Ty = 0

= definition of T'
Vi, j e dwiw; + cw; + c*w; =0
= logic
Vie (Vj#iedw!(w; —w;) =—c*(wj —w;) A
cwf = —c*w; — dww;)
= logic (by contradiction)
Vie (Vj#iew;, =w; N\ cw; =—c"w; — dwjw;)

Therefore we have proved that U is unitary iff all the coef-
ficients w; are equal (say w) and satisfy

cw* = —c*w — dw*w.
We thus have to solve the equation
d(R(w)? + I(w)?) + 2(R(c)R(w) + S(c)S(w)) =0

where the unknowns are f(w) and $(w). Treating the lat-
ter as a constant we can solve the quadratic equation in the
former:

_ —R(c) £ /R(c)2 — S (w)? — QdS(c)%(w)‘

R(w) :

However, it must be that

R(c)? — d*S(w)? — 2d3(c)I(w) =0

~ [7%(0)71 7S(c)+1]
d ’ d '

In the particular case of S(w) = 0 and R(w) # 0 (i.e. W
a non-zero, real operator) we have that

w= —§R(c)g.

If we also add the constraint that ¢ must be real (i.e. ¢ = £1)

we find that w = F2 and we can write W = —sign(c)2m

where m:q(B™) — C is the average operator:

mXE%ZX(i%

:B™
We thus have proved the following corollary.

Corollary 4.3. The only non-zero real operators W satis-
fying the unitarity of Ux (i) = Wx £ x (i) are F2m.

The Grover’s operator M = 2m — I defined in (5) is
therefore derived by imposing unitarity of Ux (i) = Wy —
x (%) for W real. We observe that the solution —M is also a
valid Grover operator and could be used as well, since My
is indistinguishable from (—M)x = — M, i.e. no quantum
measurement can distinguish them (in general, no measure-
ment can distinguish between a state £ and state z£, where
z is a complex number of modulo one).

Note that for M = 2m — I we have MM = I, and
that is not much helpful for our purposes. In particular, we
would like to increase the amplitude for states ¢ such that
£ (@) holds (because of unitarity that implies decreasing the
amplitudes for the non-solution states). More specifically,
we would like another transformation R such that

2mRx + x(i) ifie S

(MEX)(0) = {Qme —x(@) ifi¢ S

but this is exactly the effect of transformation 7'y defined by
(4). So, we obtain in fact the operator

(2m—I)Tf:MTf (11)

which is of course the body of Grover’s iteration.
We are ready to present the full derivation of the algo-
rithm, starting from specification G defined in (9):

T [rS] se® r: S

= definition of P >,® @Q (3)
M{r:[rS] p& r:[rS] | e<p<1}

C quantum semi-implementation (Lemma 4.1)
M{x : [lIxI$ = pl3Fin(r,x) | é<p< 1}

= (1) and Law S-1
Mx:[xlls=p] | €<p<1}§Fin(r,x)

= semantics of specification

X [IxII§ = €] s Fin(r, x)
C sequential composition (Law Spec2)
X:lx=v
x:x=v,Ixlg>¢€ls
Fin(r, x)
C implementation via In (Law Spec4)
In(x)3
x:x=v, IxlIE>¢€ls
Fin(r, x)
C x=(MTH)Vv = ||x||% = p(N) > & (Lemma A.2)
In(x)3
X:[x=v,x=MT) v
Fin(r, x)
C introduce k, sequential composition
In(x)s
uki[x=v,k<NAx=(MTy)kv]s
o k:[k<NAx=(MTy)y,
x = (MTy)bv Ak = N
Fin(r, x)
C assignment (recall (MTy)° = T)
In(x)s
k=03

o k:[k<NAx=(MTy)y,
X = (MTy)*v Ak =N 3
Fin(r, x)
C introduce loop (Law Spec3)

In(x)s
k=03
do(k#N)—
o k:[k<NAx=(MT)*v,
k< NAx=MTp)*v Ak > ko
ods
Fin(r, x)

C assignment (Law Spec4)

In(x)s
k=03
do(k#N) —
k:=k+13
X = MTyx
ods
Fin(r, x)
= notation

In(x)3
do N times —

X = MTrx
od;
Fin(r, x)

where in the last step we took the liberty to use an informal,
though correct, argument.

5. Conclusions

The aim of this paper has been to try to apply standard
formal methods techniques to quantum programs in an im-
perative language. In particular, we have used Grover’s
quantum search algorithm as a testbed. Starting from a rig-
orous specification of the search problem, we have refined it
by means of standard programming laws and quantum laws
until we have arrived at a feasible quantum program. The
correctness of the final program is ensured by the correct-
ness of the laws used.

Grover’s algorithm works by iterating a fixed number of
times (dependent on the problem size) a particular trans-
formation. The implementation of the iteration’s body as
a quantum operator follows from very general assumptions
on the operator’ shape (see Lemma 4.2). Previous work
showed that it is possible to derive the Deutsch-Jozsa’s al-
gorithm from its specification. However, that algorithm is
simpler than Grover’s, as it is essentially a two-step algo-
rithm (no iteration is present).

We conclude that quantum algorithms can be success-
fully treated at a high level using standard formal methods.
That means that we can benefit from of the extensive range
of techniques already developed for standard programming,
and we can reason at different levels of abstraction within
the same framework. Furthermore, no verification of the re-
sulting quantum implementation is necessary, since refine-
ment preserve correctness.

6. Acknowledgements

The author wishes to thank Jeff Sanders for many use-
ful discussions. This work has been supported by a Marie
Curie Outgoing International Fellowship within the 6% Eu-
ropean Community Framework Programme.

References

[1] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani.
Strengths and weaknesses of quantum computing. SIAM
Journal on Computing, 26(5):1510-1523, 1997.

[2] M. Boyer, G. Brassard, P. Hgyer, and A. Tapp. Tight bounds
on quantum searching. Fortschritte der Physik, 46:493-505,
1998. arxiv.org/quant-ph/9605034.

[3] M. Butler and P. Hartel. Reasoning about Grover’s quantum
search algorithm using probabilistic wp. ACM Transactions
on Programming Languages and Systems, 21(3):417-430,
1999.

[4] S.J. Gay. Quantum programming languages: survey and
bibliography. Mathematical Structures in Computer Sci-
ence, 16(4):581-600, 2006.

[5] L. K. Grover. A fast quantum mechanical algorithm for
database search. In STOC ’96: Proceedings of the 28th An-
nual Symposium on the Theory of Computing, pages 212—
219, 1996.

[6] J. He, A. Mclver, and K. Seidel. Probabilistic models for
the guarded command language. Science of Computer Pro-
gramming, 28:171-192, 1997.

[7] A. Mclver and C. C. Morgan. Abstraction, Refinement and
Proof for Probabilistic Systems. Springer, 2005.

[8] C.C. Morgan. Programming from Specifications. Prentice-
Hall International, 1994.

[9] C.C.Morgan, A. Mclver, and K. Seidel. Probabilistic predi-
cate transformers. ACM Transactions on Programming Lan-
guages and Systems, 18(3):325-353, May 1996.

[10] J. W. Sanders and P. Zuliani. Quantum programming. In
MPC ’00: Mathematics of Program Construction, Springer
LNCS, volume 1837, pages 80-99, 2000.

[11] P. W. Shor. Algorithms for quantum computation: Discrete
log and factoring. In FOCS ’94: Proceedings of the 35th An-
nual Symposium on the Foundations of Computer Science,
pages 20-22, 1994.

A. Grover’s algorithm success probability

We recall that Grover’s algorithm success probability af-
ter k iterations is p(k) = sin® (25826, with 0 defined such
that sing =,/ 2% where s is the number of solutions (we
assume s < 2"71).

Lemma A.1. For any k:IN

p(k) = (1 —€) — cos kb cos(k + 1)0

S
where ¢ = -

Proof. The proof is simple algebra, but we report it for
completeness. We first note that by definition we have that

sin & = /e and therefore ¢ = 1 — ¢ = cos® 4. We start

reasoning from the definition of p(k):
sin® (k0 + &)
= addition formula
(sin k6 cos & + sin £ cos k6)?
= logic and definition of €
&sin® k0 + € cos? k6 + 2sin § cos & sin k cos ko
= basic trigonometry
€+ cos kO((2¢ — 1) cos kO + 2sin & cos & sin k0)
= definition of ¢, addition formula
€ 4 cos kf(sin 6 sin kO — cos 6 cos k6)
= addition formula

€ — cos kf cos(k + 1)0.

O

The following result was first presented by Boyer er al.
[2], albeit via a slightly different argument.

Lemma A.2. We have that

p(N)=1—¢

where e = 2% and N = | T, /2 — 1].
Proof. By Lemma A.1 we have that
p(N) = (1—¢€)—cos NOcos(N +1)0.

We have to prove that cos N cos(IN+1)6 is negative. Since
N was defined as the least integer such that (N +1)6 = I,
then it must be that (N +1)0 > 7. Therefore cos(N +1)6
is negative, while cos N is positive. O

Remark. If we write p(k) = (1 — €) + V(k) where
V (k) = — coskf cos(k + 1)6, we can study the behaviour
of p(k) by studying V' (k)’s behaviour. In particular, V (k)
is negative and increasing for k¥ < N, positive (possibly
0) for £ = N, negative and decreasing for £ > N (and
k < 2N). We also observe that p(N) = 1 — e = 1 when
s =21 p(N) = 1 for s = 2772, A detailed study of
Grover’s algorithm performance can be found in [2].

B. Algebraic programming laws

We list a few programming and refinement laws which
hold for pGCL programs; the semantic models adopted and
proofs can be found in [6, 9]; more specification refinement
laws can be found in [8], with an emphasis on probabilism
in [7].

Law (D-1). For datatype D we have
z:[x:D] C MNz:=14 | i€ D].
Law (D-2). If e is any expression of type D then
varz:D C (varx:Dex :=e).
Law (P-1). For p, ¢,7:]0, 1] we have
(Prg1 p® Prgs) ¢ (Prgs r&prgs) =
[prg, @ pq | prg, @ pq | prgs @ gr | prg, @ §r]
where a = (1 — a).
Law (P-2). For p:[0, 1] we have
prg1p® (prg2Mprys) = (pro p@praa) N(prg; y&prys).

Law (S-1).

(prg, Mprgy) sprgs = (prg, §prgs) M (prgs $prys) -

Law (Specl-strengthen postcondition). If post’ = post
then
x : [pre,post] C xz: [pre,post’].

Law (Spec2-sequential composition). If neither mid nor
post contain initial variables then

x : [pre,post] C x: [pre,mid] § x : [mid, post].
Law (Spec3-iteration). If V is any integer-valued formula
then

x : [inv,inv A -G] C

doG = z:[invAG,invA(0<V < V) od

where neither ¢nv nor G contain initial variables; Vj is the
expression obtained from V' by substituting the initial state
of x.

Law (Spec4-assignment). If (x = o) A pre = post[x\F]
then
x: [pre,post] C z:=F.

The following law can be easily proved from the seman-
tics of specification and nondeterministic choice (see Chap-
ter 23 of [8]).

Law (Spec5-non determinism).

x: [pre,post] M x : [pre’,post’] =
x : [pre A pre’, post V post'] .

