
Logical reversibility

Paolo Zuliani
Oxford University Computing Laboratory,

Oxford, OX1 3QD,
U.K.

pz@comlab.ox.ac.uk

Abstract

A technique is developed that transforms any program in the prob-
abilistic Guarded Command Language (pGCL) into an equivalent but
reversible program. The result extends previous works firstly by con-
sidering a general purpose programming language (pGCL), and sec-
ondly by dealing with “demonic” nondeterminism and probability. A
formal definition of logical reversibility is given and the expectation-
transformer semantics for pGCL is used to prove the result. The
technique presented has a direct application in the compilation of a
general purpose programming language for quantum computation.

1 Introduction

Reversibility, when speaking of computing devices, is essentially the property
of carrying out a computation in such a way that at each step it is possible
to choose whether to execute that step or “undo” it, thus forcing the device
and its environment to return to the same conditions before execution.

In the context of logical reversibility we are interested in the logical model
(e.g. Turing machine, λ-calculus, Guarded Command Language [5], etc) of
such a device. Therefore one aims to develop a theoretical framework that
allows reversibility of the computing process.

The first attempt at studying reversibility in computing processes is due
to Rolf Landauer in 1961. He was the first to use the expression logically
reversible to denote a computation whose output uniquely defines the input.

1

The two main points of his paper [8] were that logical irreversibility is an
intrinsic feature of useful computing processes, and that the erasure of in-
formation has a non-zero thermodynamic cost, i.e. it always generates an
increase of the entropy of the universe (Landauer’s principle).

The former argument was proved to be false by Lecerf in 1963 [9] and
Bennett in 1973 [2] who independently developed a logically reversible device
based on a Turing machine, capable of calculating any computable function.
Therefore in a computation one can in principle avoid information erasure
by using a logically reversible device. In subsequent years several physical
models of reversible computing devices were developed; see for example the
billiard-ball computer of Fredkin and Toffoli [6].

Landauer’s principle has been used by Bennett in 1981 to resolve one
of the long-standing problems of physics: the paradox of Maxwell’s demon.
What prevents the demon from breaking the second law of thermodynamics
is the fact that it must erase the record of one measurement to make room
for the next, and we know that such a process is physically irreversible [3]. In
particular, the reversible techniques of this paper do not apply to the demon’s
calculation because it is permitted only one bit of scratchpad memory.

The physics of computation has gained interest as efforts directed to apply
quantum theory to computation have proved successful and with important
potential applications to real problems. The most famous of all quantum
algorithms is Shor’s algorithm for integer factorization [15]. This has of
course raised the question whether it is possible to develop a suitable pro-
gramming method for quantum computers, which we know are inherently
reversible devices. For a traditional imperative programming method, one of
the problems is represented by the assignment statement, which is logically
irreversible by its own nature. For higher-level languages it is represented by
nondeterminism and probability.

The purpose of this paper is to provide a modern extension of Bennett’s
work on reversible Turing machines, which in particular includes nondeter-
minism and probability. In particular, we shall give rules that transform
probabilistic Guarded Command Language (pGCL) [13] programs to equiva-
lent but reversible pGCL ones. Furthermore, we extend Bennett’s result to
probabilistic computations, so that also probabilistic classical algorithms can
be made reversible and run on a quantum computer. Its importance arises
as a result of the desire to compile general-purpose programming languages
(e.g. [14]) for quantum computation. Among other things, such a program-
ming language must give the possibility of simulating classical computations

2

on a quantum computer, and our work supplies the technique for a direct
compilation of an irreversible program into a reversible one.

2 Applications

As mentioned before, logical reversibility is strictly connected to quantum
computation. The reason is that the evolution of a quantum system is
governed by operators which are unitary. Unitary operators have, among
other properties, that of being invertible: therefore given a quantum me-
chanical operator U there always exists the inverse operator U−1 such that
U ◦ U−1 = I, where I is the identity operator and ◦ denotes composition of
operators (quantum mechanical operators are represented by matrices, so ◦
is in fact the standard matrix multiplication). This means that in principle
any quantum computation can be reversed. On the other hand, classical
computations are not reversible, take the assignment x := 0 for example: the
previous value of variable x is lost.

If we want to develop a programming language for quantum computers
it must therefore incorporate reversibility. qGCL [14] is a general-purpose
programming language for quantum computation, developed as a superset
of pGCL considered here. In particular, qGCL extends pGCL with four
constructs:

• transformation q, that converts a classical bit register to its quantum
analogue, a qureg;

• initialisation, which prepares a qureg for a quantum computation;

• evolution, which consists of iteration of unitary operators on quregs;

• finalisation or observation, which reads the content of a qureg.

qGCL enjoys the same features of pGCL: it has a rigorous semantics and
an associated refinement calculus (see for example [13], [10]), which include
program refinement, data refinement and combination of specifications with
code. These properties make qGCL suitable for quantum program develop-
ment and correctness proof, not just for expressing quantum algorithms.

With the techniques we are going to expose it is possible to transform any
pGCL program into a reversible equivalent one, thus making it suitable to run
on a quantum computer. The result is readily extended to qGCL programs,

3

as initialisation and evolution are themselves unitary transformations, whilst
finalisation is intrinsically irreversible.

The idea is to have a compiler for qGCL, which will produce code exe-
cutable by some quantum hardware architecture, for example quantum gates
[1]. Such a compiler will be multi-platform, as qGCL programs may contain
classical code, along with quantum one. When they will be ready, quan-
tum processors will likely be expensive resources and their use should be
restricted to genuine quantum computations, leaving all the other tasks to
classical processors. Also, the limited availability of quantum algorithms due
to the difficulty of quantum programming, is another reason of our multi-
platform choice.

Classical code in qGCL programs will be treated with the standard com-
piler techniques. Quantum code must be distinguished in two parts: trans-
formations already unitary and classical code that needs to be run on the
quantum architecture. The latter needs to be treated by the techniques of
this paper, in order to produce a reversible version of the code and its cor-
responding unitary transformation [16]. At this point all the unitary trans-
formations can be passed to the part of the compiler which will output the
code for the chosen quantum architecture.

3 Previous work

Lecerf [9] proposed the first model of logically reversible computing. He gave
a formal definition of reversible Turing machine and proved that an irre-
versible Turing machine can be simulated by a reversible one, at the expense
of a linear space-time slowdown. However, he developed that result to prove
a conjecture of theoretical computer science and his work was not immedi-
ately useful for reversible computing. Bennett’s work was instead inspired by
the previous studies of Landauer on the physics of computation and led to
a key difference: Bennett’s reversible Turing machine is a particular 3-tape
Turing machine whose behaviour can be divided in three steps: during step
one (forward computation) the machine carries out the required computa-
tion, saving the history of that in the second tape and using the first tape
as workspace. In step two the output of the computation is copied into the
third tape. In the last step the forward computation is traced back using the
history tape and cleaning the first tape. So in the end the first and second
tapes return to their initial configuration and the third contains the output.

4

In the second step lies the key difference between Lecerf’s and Bennett’s
work, as without saving the output, any logically reversible computer would
be of little practical use.

Another model of logical reversibility, the Fredkin gate [6], is a 3-bit logic
gate which is both reversible and conservative: that is input and output
have the same number of bits at 1. Reversibility and conservativity are two
independent properties: however we are not interested in conservativity, as
it does not seem to play a role for our purposes.

4 Logical reversibility

4.1 Reversible devices

Before setting out the theory we shall need, it is worthwhile to discuss some
points which will later motivate our choices.

A physically reversible device is a system whose behaviour is governed
by the reversible law of physics: for example a quantum computer [4], or
the billiard-ball computer [6]. If we look at such a system as a dynami-
cal system, we may identify a state space X and a transition function (we
suppose the behaviour to be time-independent) f :X → X, possibly partial
(input/output form part of state before/after as explained in next subsec-
tion). The reversibility hypothesis implies the injectivity of f , which in turn
implies that any step of the evolution of the system can be traced back.

Classical irreversible computations can be carried out on a physically
reversible computer, as Lecerf and Bennett discovered, but it is not trivial
to prove it. The following discussion rules out one of the most obvious
solutions: copying the input in the output. Let g:A→ A be a deterministic
computation on some state space A: we may define gr:A→ A× A by:

∀a:A • gr.a := (a, g.a),

gr is clearly injective and computable, so it seems that with very little effort
we have given a positive answer to our question. This is not so, as the
function gr is not homogeneous whereas the transition function of a physical
system always satisfies this property. One could recover homogeneousity by
changing the domain of gr in A× A, but in this way injectivity is lost.

In conclusion we look for a logically reversible device for which it is possi-
ble to reverse any single step of the computation and which is homogeneous.

5

4.2 pGCL

A GCL program is a sequence of assignments, skip, and abort manipulated
by the standard constructors of sequential composition, conditional selection,
repetition and nondeterministic choice [5]. Assignment is in the form x :=
E, where x is a vector of program variables and E a vector of expressions
whose evaluations always terminate with a single value. pGCL denotes the
guarded-command language extended with the binary constructor p⊕ for
p:[0, 1], in order to deal with probabilism. The other pGCL basic statements
and constructors are:

• skip, which always terminates doing nothing;

• abort, which models divergence;

• var, variable declaration;

• sequential composition, R # S, which firstly executes R and then, if R
has terminated, executes S;

• iteration, while cond do S, which executes S as long as predicate cond
holds;

• binary conditional, R � cond � S, which executes R if predicate cond
holds and executes S otherwise;

• nondeterministic choice, R 2 S, which executes R or S, according to
some rule inaccessible to the program at the current level of abstraction;

• probabilistic choice, R p⊕ S, which executes R with probability p and
S with probability 1− p;

• procedure declaration, proc P (param) := body, where body is a valid
pGCL statement (including the specification statement, see below) and
param is the parameter list, which may be empty. Parameters can be
declared as value, result or value result, according to Morgan’s nota-
tion [10]. As a quick explanation we will say that a value parameter is
read-only, a result parameter is write-only and a value result param-
eter can be read and written. Procedure P is invoked by simply writing
its name and filling the parameter list according to P ’s declaration.

6

Definition 4.1. The state x of a program P is the array of global variables
used during the computation. That is

x := (v1, . . . , vn) : T1 × T2 × . . .× Tn.

The cartesian product T1 × T2 × . . .× Tn of all the data types used is called
the state space of program P .

The only problem that might arise is when input and output have different
types: this can easily solved by forming a new type from their discriminated
union. Therefore there is no distinction among the type of initial, final and
intermediate state of a computation, they all belong to the same state space.

For our purposes it is also useful to augment pGCL with the specification
statement:

x : [pre, post].

It describes a computation which changes variable x in a such a way that,
if predicate pre holds on the initial state, termination is ensured in a state
satisfying predicate post over the initial and final states; if pre does not hold,
the computation aborts.

Semantics for pGCL can be given either relationally [7] or in terms of
expectation transformers [11]. We shall use the latter, due to its semplicity
in calculations. Expectation transformer semantics is an extension of the
predicate transformer one. An expectation is a [0, 1]-valued function on a
state space X and may be thought of as a “probabilistic predicate”. The set
Q of all expectations is defined:

Q := X → [0, 1].

Expectations can be ordered using the standard pointwise functional ordering
and we shall use the symbol V to denote it. The pair (Q,V) forms a
complete lattice, with greatest element the constant expectation 1 and least
element the constant expectation 0. For i, j:Q we shall write i ≡ j iff iV j
and j V i.

Standard predicates are easily embedded in Q by identifying true with
expectation 1 and false with 0. For standard predicate q we shall write [q]
for its embedding.

The set J of all expectation transformers is defined:

J := Q → Q.

7

In predicate transformer semantics a transformer maps post-conditions
to their weakest pre-conditions. Analogously, expectation transformer j:J
represent a computation by mapping post-expectations to their greatest pre-
expectations.

Not every expectation transformers correspond to a computation: only
the sublinear ones do. Expectation transformer j:J is said to be sublinear if

∀a, b, c:R+,∀A,B:Q • j.((aA+ bB)	 c)W (a(j.A) + b(j.B))	 c,

where 	 denotes truncated subtraction over expectations

x	 y := (x− y) max 0.

Sublinearity implies, among other properties, monotonicity of an expec-
tation transformer.

The following table gives the expectation-transformer semantics for pGCL
(we shall retain the wp prefix of predicate-transformer calculus for conve-
nience):

wp.abort.q := 0

wp.skip.q := q

wp.(x := E).q := q[x\E]

wp.(R # S).q := wp.R.(wp.S.q)

wp.(R� cond� S).q := [cond] ∗ (wp.R.q) + [¬cond] ∗ (wp.S.q)

wp.(R 2 S).q := (wp.R.q) u (wp.S.q)

wp.(R p⊕ S).q := p ∗ (wp.R.q) + (1− p) ∗ (wp.S.q)

wp.(z : [pre, post]).q := [pre] ∗ ([∀z • [post]V q])[x0\x]

where q:Q, x:X, p ∈ [0, 1] and cond, pre, post are arbitrary boolean pred-
icates; q[x\E] denotes the expectation obtained after replacing all free oc-
curences of x in q by espression E; u denotes the greatest lower bound; z is a
sub-vector of state x and denotes the variables the specification statement is

8

allowed to change; x0:X denotes the initial state. In the specification state-
ment expectation q must not contain any variable in x0. Recursion is treated
in general using the existence of fixed points in J .

Note that binary conditional R�cond�S is a special case of probabilistic
choice: it is just R [cond]⊕ S. This will simplify a bit the proof of our main
theorem in the next section.

For procedures we have to distinguish three cases, depending on the kind
of parameter (without loss of generality we shall assume only one parameter).
Consider a procedure P defined by:

proc P ({value|result|value result} f :T) := body

where T is some data type. Then a call to P has the following expectation-
transformer semantics:

wp.(P (value f :T\E)).q := (wp.body.q)[f\E]

wp.(P (result f :T\v)).q := [(∀f • wp.body.q[v\f])]

wp.(P (value result f :T\v)).q := (wp.body.q)[f\E]

where E is an expression of type T and v:T ; f must not occur free in q.
In predicate-transformer semantics termination of program P is when

wp.P.true = true, which directly translates to wp.P.1 ≡ 1 in expectation-
transformer semantics.

Definition 4.2. Two pGCL programs R, S are equivalent (R ' S) if and
only if for any q:Q, wp.R.q ≡ wp.S.q.

This definition induces an equivalence relation over the set of all programs.
The following lemma will also be useful later (we skip the proof, as it is a
simple application of the semantic rules just exposed).

Lemma 4.1. For pGCL programs A, B and C we have:

(skip # A) ' (A # skip) ' A

(A 2 B) # C ' (A # C) 2 (B # C)

(A p⊕B) # C ' (A # C) p⊕ (B # C)

9

4.3 Reversible programs

In this section we shall give a formal definition of reversibility for pGCL
programs, and establish some properties.

Definition 4.3. A statement R is called reversible iff there exists a state-
ment S such that

(R # S) ' skip.

S is called an inverse of R. Clearly it is not unique.

Definition 4.4. A program P is called reversible iff every statement of P
is reversible.

The requirement that any statement of P and not just P must be re-
versible correspond to the need that any step of the computation can be
inverted. The following example motivates this requirement: consider the
programs R, S defined (see the next section for a formal definition of stack,
push and pop)

R := (push x # x := −7 # x := x2)

S := pop x

One can informally check that indeed (R # S) ' skip, while it is not true
that any step of R can be inverted.

Lemma 4.2. Let R be a reversible program. Then there exists a program S
such that:

(R # S) ' skip.

Proof. Consider a program R whose form is, without loss of generality:

R = R0 #R1 # . . . #Rn−1

where n:N and the Ri’s are statements. Now we reason:

R reversible

⇒ def of reversibility

∀i:{0, . . . , n− 1}, ∃Si • (Ri # Si) ' skip

⇒ programming law

10

∀i:{0, . . . , n− 1},∃Si • (Ri # skip # Si) ' skip

⇒ hypothesis

∀i:{0, . . . , n− 2},∃Si • (Ri #Ri+1 # Si+1 # Si) ' skip

⇒ transitivity of '

(R0 #R1 # . . . #Rn−1 # Sn−1 # . . . # S1 # S0) ' skip

⇒ logic

(∃S := (Sn−1 # . . . # S1 # S0) • (R # S) ' skip

Again, S is called an inverse of R and it is not unique. A reversible
program must necessarily terminate for all inputs, as the following lemma
shows.

Lemma 4.3. Let R be a reversible program. Then wp.R.1 ≡ 1.

Proof.

R reversible

⇒ previous lemma

∃S • (R # S) ' skip

⇒ def of equivalence

∃S • ∀q:Q • wp.(R # S).q ≡ q

⇒ wp-semantics

∃S • ∀q:Q • wp.R.(wp.S.q) ≡ q

⇒ special case q ≡ 1

∃S • wp.R.(wp.S.1) ≡ 1

⇒ logic

∃S • wp.R.(wp.S.1)W 1

⇒ take q := wp.S.1

∃q:Q • wp.R.q W 1

⇒ monotonicity of wp.R

11

wp.R.1W 1

⇒ 1 greatest element of (Q,V)

wp.R.1 ≡ 1

The converse of the previous lemma is false. Consider the trivial program
x := 0: it does terminate but it is certainly not reversible.

It is worthwhile to recall that here we consider probabilistic termination
(i.e. termination with probability 1) and not just deterministic (absolute)
termination. In section 6 we shall give an example of this and apply our
reversibility techniques to it.

4.4 Stacks

Before turning to the main theorem of this work we shall briefly introduce a
well known data structure: the stack data structure. The specifications for
state and operations are, for a data type D (in terms of state x0 before and
state x after):

module stack
var x:seq D •
proc push (value f :D) := x : [x = f :x0]
proc pop (result f :D) := x, f : [x0 = f :x]

end

where seq denotes the sequence data type. There is no need of initialisation:
any sequence of type D will do.

The semantics is the usual: push just copies the content of f on the top
of the stack, whereas pop saves the top of the stack in f and then clears it.
The stack is of unlimited capacity, that is we may save as many values as we
wish.

From the definitions it easily follows that the precondition for push is
true and the precondition for pop is that x0 must not be empty.

The next lemma shows that an assignment can be regarded as particular
sequential composition of push and pop .

Lemma 4.4. For variable v:D and expression E:D we have:

(push E # pop v) ' v := E.

12

Proof. We shall consider an arbitrary expectation q over variables x:seq D
and v:D.

wp.(push E # pop v).q

≡ semantics of sequential composition

wp.(push E).wp.(pop v).q

≡ semantics of pop

wp.(push E).([∀f • [∀x, v • [x0 = v:x]V q[v\f]]])[x0\x]

≡ logic and x:seq D

wp.(push E).([∀f • (q[v\f])[x, f\tail(x0), head(x0)]])[x0\x]

≡ syntactical substitution

wp.(push E).([∀f • q[x, v\tail(x0), head(x0)]])[x0\x]

≡ syntactical substitution and logic

wp.(push E).(q[x, v\tail(x), head(x)])

≡ semantics of push

(wp.(x : [x = f :x0]).q[x, v\tail(x), head(x)])[f\E]

≡ semantics of specification

((q[x, v\tail(x), head(x)])[x\f :x0])[f\E]

≡ syntactical substitution

(q[x, v\tail(f :x), head(f :x)])[f\E]

≡ sequence properties

(q[x, v\x0, f])[f\E]

≡ syntactical substitution

q[x, v\x0, E]

≡ x0 is arbitrary

wp.(v := E).q

We immediately derive the corollary that, when applied to program vari-
ables, push is reversible and an inverse is pop .

13

Corollary 4.5. For variable v:D, we have:

(push v # pop v) ' skip.

Proof. We shall go straight into calculation:

wp.(push v # pop v).q

≡ previous lemma

wp.(v := v).q

≡ assignment semantics

q[v\v]

≡ syntactical substitution

q

≡ skip semantics

wp.skip.q

5 Reversibility

The meaning of the following theorem is that an arbitrary terminating pGCL
computation can be performed in a reversible way. For any pGCL program
P there is a corresponding reversible program Pr and an inverse Pi. Since
(Pr # Pi) ' skip it would seem that we cannot access the output of Pr, thus
having nothing useful. However, as in Bennett’s work [2], copying the final
state of Pr before the execution of Pi solves the problem. In this way we
will end up with the final and the initial state of Pr (the latter because of
the execution of Pi). This new three-step reversible program is therefore not
exactly equivalent to P but to P preceeded by a copy program that saves
the initial state of P .

A program transformer t:pGCL → pGCL is a finite set of (computable)
syntactical substitution rules that applied to a program P uniquely defines
another program Pt. Examples of program transformers are the various pre-
processors for programming languages like C or C++.

14

Theorem 5.1. There exist three program transformers r, c and i such that
for any terminating program P , Pr is an inverse of Pi and:

(Pr # Pc # Pi) ' (Pc # P).

Proof. The proof of the theorem relies on the following reversible equivalent
and inverse of every atomic statement and constructor of pGCL. They are
listed in the following table:

pGCL atomic statement S reversible statement Sr inverse statement Si

v := e push v # v := e pop v
skip skip skip

pGCL constructor C reversible constructor Cr inverse constructor Ci

R # S Rr # Sr Si # Ri

while c do S od push b # push F # pop b #
while c do while b do

Sr # push T Si # pop b
od od#

pop b
R / c . S push b # pop b #

(Rr # push T) / c . (Sr # push F) (Ri / b . Si)#
pop b

R 2 S push b # pop b #
(Rr # push T) 2 (Sr # push F) (Ri / b . Si)#

pop b
R p⊕ S push b # pop b #

(Rr # push T) p⊕ (Sr # push F) (Ri / b . Si)#
pop b

proc Q(param) := body proc Qr(param) := bodyr proc Qi(param) := bodyi

where v:D for some data type D, b:B (B := {F, T}) is a boolean variable and
c is a predicate. Variable declaration var is not listed in the table, as it does
not contain any code.

Program Pr can be built from program P simply by applying to every
statement of P the reversible rules given in the previous table (of course
the rules must be recursively applied until we arrive at an atomic pGCL
statement). Similarly, program Pi can be developed from P applying the
inverse rules of the table to every statement of P .

Pc is just a ‘copy’ program that copies the state x:X of P into a stack
SC :stack.X. If x = {v1, v2, . . . , vn} then Pc is:

push v1 # push v2 # # push vn−1 # push vn

By corollary 4.5 Pc is reversible.
The strategy is the following: Pr behaves like P , except that it saves its

history in the stack S:stack.(X ∪ B). The copy program Pc copies the final

15

state xf of Pr into stack SC . Finally Pi ‘undoes’ the computation and takes
variables x, b, S back to their original value (i.e. before the beginning of Pr);
the output is encoded in the state xf saved by Pc in the stack SC .

The execution of (Pc # P) has therefore the same effect of (Pr # Pc # Pi),
except that x and head(SC) are swapped. Things can then be adjusted by
executing swap(head(SC), x) after either (Pr # Pc # Pi) or (Pc # P). Note that
swap is reversible and self-inverse.

The first step of the proof is to show that every reversible atomic state-
ment and every reversible constructor is, with regard to the previous defini-
tion, really reversible.

For skip the verification is immediate. For the assignment v := E we
have to show that:

(push v # v := E # pop v) ' skip.

We reason:

wp.(push v # v := E # pop v).q

≡ seq. composition semantics

wp.(push v).wp.(v := E).wp.(pop v).q

≡ pop semantics

wp.(push v).wp.(v := E).(q[x, v\tail(x), head(x)])

≡ assignment semantics

wp.(push v).(q[x, v\tail(x), head(x)])[v\E]

≡ logic

wp.(push v).(q[x, v\tail(x), head(x)])

≡ see proof of lemma 4.4

q

The proof for the constructors is by induction: the hypothesis is to have
two reversible statements Rr, Sr (and their inverse Ri, Si) and we have to
prove that the six reversible constructors will still generate reversible state-
ments.

For sequential composition we have to show that:

(Rr # Sr # Si #Ri) ' skip

16

We shall simplify the LHS:

wp.(Rr # Sr # Si #Ri).q

≡ semantics

wp.(Rr).wp.(Sr).wp.(Si).wp.(Ri).q

≡ associativity

wp.(Rr).(wp.(Sr).wp.(Si)).wp.(Ri).q

≡ induction hypothesis on Sr

wp.(Rr).wp.(Ri).q

≡ induction hypothesis on Rr

q

Consider now the probabilistic combinator p⊕. Let Qr, Qi be the pro-
grams:

Qr :=

(
push b #
(Rr # push T)⊕p (Sr # push F)

)

Qi :=

 pop b #
(Ri / b . Si)#
pop b


We show that (Qr #Qi) ' skip:

Qr #Qi

' lemma 4.1

push b # (Rr # push T #Qi) p⊕ (Sr # push F #Qi)

We shall work on the LHS of p⊕:

Rr # push T # pop b # (Ri / b . Si) # pop b

' associativity

Rr # (push T # pop b) # (Ri / b . Si) # pop b

' lemma 4.4

Rr # b := T # (Ri / b . Si) # pop b

' associativity

17

Rr # (b := T # (Ri / b . Si)) # pop b

' conditional selection

Rr #Ri # pop b

' induction hypothesis

skip # pop b

' programming law

pop b

A similar calculation of the RHS of p⊕ gives the same result, therefore:

Qr #Qi

'
push b # (pop b p⊕ pop b)

' programming law

push b # pop b

' corollary 4.5

skip

The proof for the nondeterministic combinator is almost identical to the
previous, so we omit it. The conditional selection is a special case of proba-
bilistic choice and it does not need any further attention. The proof for the
iteration construct is rather long, so is given in the appendix.

For the procedure definition we shall only prove the most general case of
parameters, value result. Consider the procedure Q defined by:

proc Q(value result f :T) := body

we have to show that, for variable a:T :

Qr(a) #Qi(a) ' skip.

We reason:

wp.(Qr(a) #Qi(a)).q

≡ sequential composition

18

wp.Qr(a).(wp.Qi(a).q)

≡ def of Qi and substitution

wp.Qr(a).((wp.(bodyi).q[a\f])[f\a])

≡ def of Qr and substitution

wp.(bodyr).((wp.(bodyi).q[a\f])[f\a])[a\g])[g\a]

≡ logic

(wp.(bodyr).(wp.(bodyi).q[a\f]))[f\g])

≡ induction hyothesis

(q[a\f])[f\g]

≡ logic

q[a\g]

≡ g is arbitrary

q

We can see from the table that the reversible constructor for conditional,
probabilistic and nondeterministic choice are very similar, whereas the in-
verse constructor is the same for the three of them. In fact for the issue of
reversibility it does not matter in what manner a selection of two possible
ways has been carried out: it only matters which way has been followed.

6 Example

In this section we shall illustrate the application of our reversible and in-
verse techniques on a program which terminates only with probability 1 (not
absolutely). Consider the following program P :

P :=


var c:B •
c := T #
while c do

(skip) 1
2
⊕ (c := F)

od



19

elementary probabilistic reasoning shows that wp.P.1 ≡ 1. Using the re-
versible rules of the table we develop program Pr:

Pr

= def of Pr
var c:B •
c := T #
while c do

(skip) 1
2
⊕ (c := F)

od


r

= seq composition and local block

var c:B •
(c := T)r # while c do

(skip) 1
2
⊕ (c := F)

od


r

= assignment and loop

var c, b:B •
push c #
c := T #
push b # push F #
while c do(

(skip) 1
2
⊕ (c := F)

)
r
#

push T
od

= probabilistic choice

var c, b:B •
push c #
c := T #
push b # push F #
while c do(

(skip # push T) 1
2
⊕ ((c := F)r # push F)

)
#

push T
od

20

= assignment

var c, b:B •
push c #
c := T #
push b # push F #
while c do(

(skip # push T) 1
2
⊕ (push c # c := F # push F)

)
#

push T
od

Analogously, program Pi, an inverse of Pr, is developed applying the
inverse rules of the table:

Pi =



var c, b:B •
pop b #
while b do

pop b #
(skip) / b . (pop c) #
pop b # pop b

od
pop b # pop c


and we see that (Pr # Pi) ' skip.

7 Conclusions

We have developed a set of rules that, given a pGCL program P , enables
us to write another program Pr that computes the same output of P , but in
a logically reversible way. For this purpose Pr saves its ‘history’ on a stack
during the forward computation; the stack will be cleaned by the backward
computation that takes Pr to its initial state. The output of the forward
computation is copied onto another stack, in order to be available at the end
of the process.

For future work it would worth discussing the uniqueness of the reversible
and inverse statement Sr and Si: our argument just shows that it is possible
to find one. The proof for the reversible loop constructor might be able to
be simplified by making use of further wp laws.

21

8 Acknowledgements

The author would like to thank Jeff Sanders for his suggestions and for having
read various drafts of this paper.

This work has been supported by a scholarship from the Engineering
and Physical Sciences Research Council (UK) and by a scholarship from
Università degli Studi di Perugia (Italy).

References

[1] Adriano Barenco et al. Elementary gates for quantum computation.
Physical Review A, 52(5):3457–3467, 1995.

[2] Charles H. Bennett. Logical reversibility of computation. IBM Journal
of Research and Development, 17:525–532, 1973.

[3] Charles H. Bennett. The thermodynamics of computation - a review.
IBM Journal of Research and Development, 21:905–940, 1981.

[4] David Deutsch. Quantum theory, the Church-Turing principle and the
universal quantum computer. Proceedings of the Royal Society of Lon-
don, A400:97–117, 1985.

[5] E. W. Dijkstra. Guarded commands, nondeterminacy and the formal
derivation of programs. CACM, 18:453–457, 1975.

[6] Edward Fredkin and Tommaso Toffoli. Conservative logic. International
Journal of Theoretical Physics, 21:219–253, 1981.

[7] J. He, A. McIver, and K. Seidel. Probabilistic models for the guarded
command language. Science of Computer Programming, 28:171–192,
1997.

[8] Rolf Landauer. Irreversibility and heat generation in the computing
process. IBM Journal of Research and Development, 3:183–191, 1961.

[9] Yves Lecerf. Machines de Turing réversibles. Récursive insolubilité en
n∈N de l’équation u = θnu, où θ est un isomorphisme de codes. Comptes
rendus de l’Académie française des sciences, 257:2597–2600, 1963.

22

[10] C. C. Morgan. Programming from Specifications. Prentice-Hall Interna-
tional, 1994.

[11] C. C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate trans-
formers. ACM Transactions on Programming Languages and Systems,
18(3):325–353, May 1996.

[12] Charles Carroll Morgan. Proof rules for probabilistic loops. In Proceed-
ings of the BCS-FACS 7th Refinement Workshop. Springer Verlag, July
1996.

[13] Charles Carroll Morgan and Annabelle McIver. pGCL: formal reason-
ing for random algorithms. South African Computer Journal, 22:14–27,
1999.

[14] J. W. Sanders and P. Zuliani. Quantum programming. In Mathematics
of Program Construction, Springer-Verlag LNCS, volume 1837, pages
80–99, 2000.

[15] Peter W. Shor. Algorithms for quantum computation: Discrete log
and factoring. In Proceedings of the 35th Annual Symposium on the
Foundations of Computer Science, pages 20–22, 1994.

[16] Paolo Zuliani. Quantum Programming. PhD thesis, Ox-
ford University Computing Laboratory, 2001. Available at
http://www.comlab.ox.ac.uk.

A Appendix

Before going into the proof for the iteration construct we shall introduce
relational semantics for GCL and extend it, according to our needs, to pGCL.
A more general treatment of relational models for pGCL is given in [7].

A.1 Relational semantics

A nondeterministic program is modelled relationally by a relation over its
state space, and it is viewed as a state transformer, in which the input is
coded in a particular initial state and the output, if the program halts, in a
particular final state.

23

To address the problem of non termination the state space X of a program
is usually augmented with the ⊥ element, thus forming a new state space
X⊥ := X ∪ {⊥}.

Definition A.1. Let P be a GCL program and X its state space. The
semantics of P is the total relation [P]:X⊥ ←→ X⊥ defined by:

x [P] y := program P when started in state x may terminate in state y,

where x, y:X⊥.

In the above definition we have used may because of nondeterminism
program P is allowed to terminate in more than one state or perhaps also
not at all. The expression x [P]⊥ denotes the fact that P may not terminate
from initial state x. Since ⊥ never occurs as an initial state we may define
⊥ [P] y as we wish: it is however chosen in such a way that [P] satisfies some
healthiness conditions which are required for a relation in order to represent
a computation (see [7] for a full treatment).

In our case we only deal with terminating programs, therefore making
not necessary the extra state ⊥. The simplest terminating program is skip,
whose semantics is thus the identity relation on X, ιX .

We shall use the same model for pGCL as well, thus multiple-valuedness of
relations will make no distinction between nondeterminism and probabilism.
For our purposes this is not an issue.

For sets A,B, relation r:A←→ B and a:A we define r.LaM := {b:B•a r b}.
We shall now model the execution of statement S with initial state x, that is S
halts in one of its final states. This can be formalized by [S].x := y:([S].LxM).
Furthermore we can substitute to any statement S the assignment state-
ment x := ([S].x). Again, we do not distinguish between probability and
nondeterminism.

The following lemma will be useful later.

Lemma A.1. Let R, S be statements over state space X. Then for x:X:

[R # S].LxM =
⋃

y:([R].LxM)

[S].LyM .

Proof. We reason:

24

[R # S].LxM

= def of L·M

{y:X • x [R # S] y}
= seq composition

{y:X • ∃z:X • x [R] z ∧ z [S] y}
= def of L·M

{y:X • z:([R].LxM) ∧ z [S] y}
= logic⋃

z:([R].LxM)[S].LzM

For a function f :X → Y and W ⊆ X, f�W :W → Y denotes the restric-
tion of f to W defined by:

∀w:W • f�W.w := f.w .

For a statement S and i:N we define the iterated statement Si by:

S0 := skip,

Si := S # Si−1 .

A.2 Iteration

With respect to iteration we have to prove that:

(Wr #Wi) ' skip

where:

Wr :=


push b # push F #
while c do
Sr#
push T

od

 , Wi :=


pop b#
while b do
Si#
pop b

od#
pop b



25

The proof will be split in two parts: first we shall prove that Wr always
terminates then, using Hoare logic, we prove the correctness of the composi-
tion of the two loops.

We point out that the next lemma might be easily proved using the
probabilistic variant rule [12], but that rule is complete only for finite state
spaces.

Let X be the state space of statement S; program Wr’s state space is
then Xr := (X × B×H), where H := stack.(X ∪ B).

Lemma A.2. Consider a terminating loop L := (while c do S od). Then
loop Lr (reverse of L) is terminating as well.

Proof. We have to prove that for expectation 1 over Xr, we have wp.L.1 ≡
wp.Lr.1 ≡ 1. Consider the two program transformers l, lr:pGCL → pGCL
defined by:

l.P := (S # P) / c . skip

lr.P := (Sr # push T # P) / c . skip.

We shall show that:

∀n:N • wp.(ln.abort).1 ≡ wp.(lnr .abort).1

therefore:

1 ≡ wp.L.1 ≡ (t n:N wp.(ln.abort).1) ≡
(t n:N wp.(lnr .abort).1) ≡ wp.Lr.1

We do not need to run the limits beyond the natural numbers, as we are
dealing with continous statements only; we shall make use of the induction
principle.

The base case n = 0 is trivially true:

l0.abort = abort = l0r .abort.

Consider now the successor case for n:N:

wp.(ln+1
r .abort).1

≡ def of lr

wp.((Sr # push T # lnr .abort) / c . skip).1

26

≡ semantics of conditional

[¬c] ∗ wp.skip.1 + [c] ∗ wp.(Sr # push T # lnr .abort).1

≡ skip and seq. composition

[¬c] ∗ 1 + [c] ∗ wp.Sr.wp.(push T).wp.(lnr .abort).1

≡ induction hypothesis

[¬c] ∗ 1 + [c] ∗ wp.Sr.wp.(push T).wp.(ln.abort).1

≡ ln acts on X only and logic

[¬c] ∗ 1 + [c] ∗ wp.Sr.wp.(push T).(wp.(ln.abort).(1�X) ∗ (1�B×H))

≡ logic

[¬c] ∗ 1 + [c] ∗ wp.Sr.(wp.(l
n.abort).(1�X) ∗ wp.(push T).(1�B×H))

≡ push terminating

[¬c] ∗ 1 + [c] ∗ wp.Sr.(wp.(l
n.abort).(1�X) ∗ (1�B×H))

≡ logic

[¬c] ∗ 1 + [c] ∗ (1�B×H) ∗ wp.Sr.(wp.(l
n.abort).(1�X))

≡ Sr behaves like S on X variables

[¬c] ∗ 1 + [c] ∗ (1�B×H) ∗ wp.S.(wp.(ln.abort).(1�X))

≡ logic

[¬c] ∗ 1 + [c] ∗ wp.S.wp.(ln.abort).1

≡ semantics of conditional

wp.((S # ln.abort) / c . skip).1

≡ def of l

wp.(ln+1.abort).1

In order to simplify the subsequent proofs we shall make use of a counter
variable k, which will be incremented at every iteration of the reverse loop

27

and decremented at every iteration of the inverse loop. Loops W ′
r,W

′
i are :

W ′
r :=


push b # push F #
while c do
Sr #
push T #
k := k + 1

od

 , W ′
i :=



pop b #
while b do
Si #
pop b #
k := k − 1

od #
pop b


Since neither Sr nor Si modify k, we can leave it out of the program’s state
without affecting our arguments; we shall also suppose for convenience that
k = 0 before entering W ′

r.

Lemma A.3. Let y = (x, b, h):Xr represents Wr’s state. Then

while c do (Sr # push T) # k := k + 1 od

has invariant I:
I := y:([(Sr # push T)k].Ly0M)

where y0 = (x0, b0, h0).

Proof. Using Hoare’s logic we prove:

(I ∧ c)Sr # push T (I).

Since [skip] = ιXr , I holds before entering the loop. Now we reason:

I

⇔ def of I

y:([(Sr # push T)k].Ly0M)

⇐ backward substitution k := k + 1

y:([(Sr # push T)k+1].Ly0M)

⇐ backward sub y := ([Sr # push T].y)

([Sr # push T].y):([(Sr # push T)k+1].Ly0M)

⇔ associativity of seq composition

([Sr # push T].y):([(Sr # push T)k # (Sr # push T)].Ly0M)

28

⇐ lemma A.1

([Sr # push T].y):
(⋃

z:([(Sr#push T)k].Ly0M)[(Sr # push T)].LzM
)

⇐ logic

y:([(Sr # push T)k].Ly0M)

⇐ def of I and logic

(I ∧ c)

The push F statement before the loop just changes the initial state of the
program to y0 = (x0, b0, F :h0) which we therefore assume in the subsequent
proofs.

Before entering the inverse loop there is a pop b statement. We have to
prove that:

(I) pop b (y:([(Sr # push T)k # pop b].Ly0M)).

We reason:

(y:([(Sr # push T)k # pop b].Ly0M))

⇐ backward sub y := ([pop b].y)

([pop b].y):([(Sr # push T)k # pop b].Ly0M))

⇔ lemma A.1

([pop b].y):
(⋃

z:[(Sr#push T)k].Ly0M[pop b].LzM
)

⇔ pop deterministic

([pop b].y):
(⋃

z:[(Sr#push T)k].Ly0M[pop b].z
)

⇔ logic

y:([(Sr # push T)k].Ly0M)

⇔ def of I

I

We can now pass to the last lemma.

29

Lemma A.4. The inverse loop:

while b do (Si # pop b) # k := k − 1 od

has invariant J:

J := y:([(Sr # push T)k # pop b].Ly0M)

Proof. We reason:

J

⇔ def of J

y:([(Sr # push T)k # pop b].Ly0M)

⇐ backward substitution k := k − 1

y:([(Sr # push T)k−1 # pop b].Ly0M)

⇐ backward sub of y := ([Si # pop b].y)

([Si # pop b].y):([(Sr # push T)k−1 # pop b].Ly0M)

⇐ logic and induction hypothesis

([Si # pop b].y):([(Sr # push T)k # pop b # Si # pop b].Ly0M)

⇔ associativity of seq composition

([Si # pop b].y):([((Sr # push T)k # pop b) # (Si # pop b)].Ly0M)

⇔ lemma A.1

([Si # pop b].y):
(⋃

z:[(Sr#push T)k#pop b].Ly0M[Si # pop b].LzM
)

⇐ logic

y:([(Sr # push T)k # pop b].Ly0M)

⇔ def of J and logic

(J ∧ c)

It is easy to see that the loop terminates after exactly k iterations: as
long as k > 0 we have b = T . When k = 0 the postcondition is therefore
y:([pop b].Ly0M), which is equivalent to y := ([pop b].y0) as pop is determin-
istic. The postcondition can be further simplified:

30

[pop b].y0

= def of y0

[pop b].(x0, b0, F :h0)

= semantics of pop

(x0, F, h0)

and the loop then terminates since b = F . Now, defining C to be the program:

C :=


push F #
while c do Sr # push T od#
pop b #
while b do Si # pop b od#


from Lemma A.3, A.4 and remark above, we get that C ' (b := F). There-
fore:

(Wr #Wi)

' def of Wr,Wi

push b # C # pop b

' remark above

push b # b := F # pop b

' see proof for assignment

skip

and this completes the proof for the main theorem.

31

