
Entangλe: A Translation Framework from
Quipper Programs to Quantum Markov Chains ?

Linda Anticoli1, Carla Piazza1, Leonardo Taglialegne1, and Paolo Zuliani2

1 Dept. of Mathematics, Computer Science and Physics, University of Udine, Italy
anticoli.linda@spes.uniud.it,carla.piazza@uniud.it

2 School of Computing, Newcastle University, United Kingdom
paolo.zuliani@ncl.ac.uk

Abstract. Entangλe is a framework for translating the quantum pro-
gramming language Quipper to the QPMC model checker. It has been
developed in order to formally verify Quipper-like programs. Quipper
is a functional circuit description language, allowing an high-level ap-
proach for manipulating quantum circuits. Quipper uses the vector state
formalism and provides high-level operations. QPMC is a model checker
designed for quantum protocols specified as Quantum Markov Chains,
and it is based on the density matrix formalism; QPMC supports the
temporal logic QCTL. We have developed Entangλe to deal with the no-
tion of tail recursive quantum programs in Quipper, and so we are able
to verify QCTL properties over such programs. The tool implementa-
tion has been tested on several quantum protocols, including the BB84
protocol for quantum key distribution.

Keywords: Quantum Languages, Quantum Circuits, Model Checking

1 Introduction

Entangλe is a framework allowing to define – by using a sublanguage of the quan-
tum programming language Quipper, called Quip-E – and automatically verify
– using the quantum model checker QPMC – formal properties of quantum algo-
rithms and protocols by abstracting away from low-level features. A preliminary
version of Entangλe has been presented in [1], and the new, extended version is
freely available3.

Quipper [16] is a functional quantum programming language based on Haskell
that allows to build and simulate quantum circuits and programs by describing
them in a simple programming style. QPMC [6] is a PRISM-inspired model
checker that uses the quantum temporal logic QCTL to verify properties of
quantum protocols.

Currently, Quipper lacks a built-in formal verification tool, while QPMC
supports formal verification but it is based on a low-level specification language.

? This work has been partially supported by INdAM GNCS, and by the PRID EN-
CASE UniUD project.

3 https://github.com/miniBill/entangle

2 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

Entangλe translates Quipper-like programs (written in Quip-E) into QPMC
structures (i.e., Quantum Markov Chains). We used Entangλe to translate sev-
eral protocols and quantum algorithms, including Quantum Key Distribution
protocols (herein QKD) in both their recursive and non-recursive version, and
entanglement-based protocols. Entangλe can be used to verify classical proper-
ties, i.e., measurement outcomes or probability distributions over them, but also
for verifying whether quantum effects such as correlations and entanglement are
preserved throughout a computation. The extensions of Entangλe, with respect
to the previous version, are:

– a new initialization operator (due to the need to devise a translation suitable
for QPMC);

– support for tail recursion in quantum programs;
– an easy-to-use graphical user interface.

The paper is organized as follows: Section 2 introduces the basic concepts and
notation regarding the quantum mechanics formalisms used in this paper, plus a
short description of the Quipper and QPMC languages. Section 3 shows the tool
and describes the main implementation choices made throughout its develop-
ment. Finally, Section 4 presents two examples of quantum algorithms translated
and tested: Grover’s algorithm for quantum search, and our tail-recursive ver-
sion of the QKD protocol BB84. (For further references about the non-recursive
version see [14, 5].) Section 5 concludes the paper.

2 Setting the Context

2.1 Quantum Formalisms

Quantum systems are represented in a complex Hilbert space H i.e., a complete
vector space equipped with an inner product. The elements of H (vectors) are
denoted by |ψ〉 (i.e., ket notation). The notation 〈ψ| (i.e., bra notation) denotes
the transposed conjugate of |ψ〉. The scalar product of two vectors ϕ and ψ in H
is denoted by 〈ϕ|ψ〉, whereas |ϕ〉〈ψ| denotes the linear operator defined by |ϕ〉
and 〈ψ|. We use I to denote the identity matrix and tr(·) for the matrix trace.

There are two possible formalisms based on Hilbert spaces for quantum sys-
tems: the state vector formalism and the density matrix one.

State Vectors The state of a quantum system is described by a normalized
vector |ψ〉 ∈ H, i.e., ‖|ψ〉‖ =

√
〈ψ|ψ〉 = 1. The normalization condition is

related to the probabilistic interpretation of quantum mechanics.
The temporal evolution of a quantum system is described by a unitary oper-

ator (see, e.g., [14]). A linear operator U is unitary if and only if U† = (UT)∗ =
U−1. Unitary operators preserve inner products and, as a consequence, norms of
vectors. In absence of any measurement process, the state |ψ0〉 at time t0 evolves
at time t1 through the unitary operator U to the state

|ψ1〉 = U |ψ0〉.

Entangλe 3

If a measurement occurs, the state collapses to one of the eigenstates of the
observable measured.

An observable is a property that can be measured, i.e., a physical quantity
such as position, spin, etc. Observables are Hermitian operators (see, e.g., [15])
i.e., A = A†. If no degeneracy occurs, an Hermitian operator A can be decom-
posed as

A =

n∑
i=1

ai|ϕi〉〈ϕi|

where the ai’s (|ϕi〉’s) are the eigenvalues (eigenvectors, respectively) of A. The
eigenvalues of a Hermitian operator are real numbers.

The outcome of measuring observable A, given a system in a state |ψ〉, is one
of its eigenvalues ai. The state vector of the system after the measurement is:

(|ϕi〉〈ϕi|)|ψ〉
||(|ϕi〉〈ϕi|)|ψ〉||

with probability

p(ai) = ||(|ϕi〉〈ϕi|)|ψ〉||2 = 〈ψ|(|ϕi〉〈ϕi|)|ψ〉.

Density Matrices The state of a quantum system is here described by an
Hermitian, positive matrix ρ with tr(ρ) = 1. A matrix ρ is positive if for each
vector |φ〉 it holds that 〈φ|ρ|φ〉 ≥ 0. Such matrices are called density matrices.

Given a normalized vector |ψ〉 representing the state of a system through the
state vector formalism, the corresponding density matrix is |ψ〉〈ψ|.

Evolution and measurement of quantum systems are now described by su-
peroperators [14]. A superoperator is a (linear) function E : ρ0 → ρ1 which
maps density matrices to density matrices and satisfies the following properties:
E preserves hermiticity; E is trace preserving; E is completely positive. Requir-
ing complete positivity allows a linear map to be positivity preserving even if
the system under consideration has previously been correlated with another,
unknown, system. In this case, indeed, positivity alone does not guarantee a
positive evolution of the density matrix.

Given a unitary operator U the corresponding superoperator EU can be de-
fined as follows:

EU (ρ) = UρU†.

A quantum measurement is described by a collection {Mi} of linear opera-
tors, called measurement operators, satisfying the following condition:∑

i

M†iMi = I

where the index i refers to the measurement outcomes that may occur.

4 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

2.2 Quipper

Quipper is an Haskell-like quantum circuit description language based on Knill’s
QRAM model [12] of quantum computation. The language is endowed with
quantum and classical data types, combinators, and libraries of functions within
Haskell, together with an idiom, i.e., a preferred style of writing quantum pro-
grams [10]. Quipper is based on the state vector formalism and its semantics is
given in terms of quantum circuits [14], which involve qubits and unitary gates.

Quipper programs are functions in which qubits are held in variables and
gates are applied to them one at a time. The Haskell monad Circ, which from
an abstract point of view returns a quantum circuit, encapsulates this behavior.
An example of a simple Quipper program with one qubit, where qgate at refers
to a generic quantum gate, and its corresponding circuit representation can be
seen in the following:

qExample :: Qubit -> Circ Qubit
qExample q = do

qgate_at q
return q |q〉 qGate

2.3 QPMC

QPMC is a model checker for quantum programs and protocols available in both
web-based and off-line version4, and it based on the density matrix formalism
of quantum mechanics [14][15]. The semantics of a QPMC program is given
in terms of a quantum Markov chain (herein QMC), a Markov chain in which
the state space is taken classical, while all quantum effects are encoded in the
superoperators labelling the transitions (see, e.g., [6, 7]).

QPMC takes in input programs written in an extension of PRISM proba-
bilistic model checker’s language [13] allowing, in addition, the specification of
types vector, matrix, and superoperator. A translation of the QMC relative
to the Quipper example introduced above, and its graphical representation, can
be seen in the following:

qmc
const matrix A1 = QGATE;
module resetCirc

s: [0..1] init 0;
[] (s = 0) -> <<A1 >> : (s’ = 1);
[] (s = 1) -> true;

endmodule

Properties of quantum protocols are expressed as formulae of the quantum
computation tree logic (QCTL [7]), a temporal logic for reasoning about quan-
tum systems, and defined as an extension of PCTL [11] in which classical prob-
abilities are replaced by quantum probabilities represented by superoperators.

4 Available at http://iscasmc.ios.ac.cn/too/qmc

Entangλe 5

A QCTL formula is a formula over the following grammar:

Φ ::= a | ¬Φ | Φ ∧ Φ | Q∼ε[Φ]

φ ::= XΦ | ΦU≤kΦ | ΦUΦ

where a is an atomic proposition, ∼ ∈ {.,&,h}, E is a superoperator, k ∈ N. Φ
is a state formula, while φ is a path formula. For instance, the formula Q∼ε[φ]
means that the probability that the paths from a certain state satisfy the formula
φ is constrained by ε; Q =?[φ] computes the superoperator satisfying φ and
qeval((Q =?)[ϕ], ρ) returns the density matrix obtained at the selected step.
Finally, the formula qprob((Q =?)[φ], ρ) = tr(qeval((Q =?)[φ], ρ))) computes
the probability of satisfying φ, starting from the quantum state ρ [6].

3 Entangλe

The framework Entangλe5 has been implemented using Haskell, which allowed
to import and re-use libraries already developed for Quipper. The first version
of Entangλe, which was limited to the translation of quantum circuits, has been
presented in [1]. In order to translate a larger class of programs, we restricted
Quipper to an ad hoc sublanguage for Entangλe, called Quip-E, allowing the use
of reset operators, unitary and measurement gates, and tail-recursion. In particu-
lar, in the tail-recursive programs we considered, the results of measurements are
used as guard conditions for recursive calls (after being converted to Boolean val-
ues by using a dynamic lifting instruction). The Body of a tail-recursive quantum
program written in Quip-E, should be written using the following instructions:

1. reset: A sequence of unitary operators is used to initialize a qubit as |0〉;
2. unitary: A unitary operator is applied to a list of qubits;

3. measure: A list of qubits is measured in the standard basis through the
measure Quipper operator resulting in a list of bits;

4. dynamic lift: A bit is lifted to a boolean throught the dynamic lift Quip-
per operator;

5. if-then-else: Depending on the evaluation of a Boolean expression either a
body Body C 1 or a body Body C 2 are used;

6. exit On: It has been introduced in Quip-E to guarantee the translation of
tail-recursive programs only, without other syntactical checks; this instruc-
tion can only be used as last instruction and its effect is the evaluation of a
Boolean expression: if it is true, the program terminates, otherwise a loop
to the first instruction occurs.

In the following there is a small example showing the main differences between
the Quipper-like Quip-E code (on the left, with user-defined functions) and

5 Available at https://github.com/miniBill/entangle

6 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

an equivalent program using the standard syntax of Quipper (on the right).

exampleCirc :: (Qubit , Qubit) ->
Circ RecAction
exampleCirc (q1, q2) = do

reset_at q1
reset_at q2
gate_X_at q2
hadamard_at q1
m <- measure q2
bool <- dynamic_lift m
if bool

then gate_X_at q1
else gate_Z_at q1

m1 <- measure q1
exitOn bool

exampleCirc :: (Qubit , Qubit) ->
Circ ()
exampleCirc (q1, q2) = do

[q1 , q2] <- qinit [True ,
False]

hadamard_at q1
m <- measure q2
bool <- dynamic_lift m
if bool

then gate_X_at q1
else gate_Z_at q1

exampleCirc(q1 ,
q2)

m1 <- measure q1

Moreover, Entangλe now features a graphical interface to provide a more
intuitive layout for writing quantum programs. A snapshot of Entangλe’s inter-
face is shown in Figure 1. It is divided into three main blocks: Quipper, Tree and
QPMC, which will be analyzed in the following.

Fig. 1: Entangλe GUI.

3.1 Quipper

This block is devoted to the writing of programs that should be translated; it
takes in input only Quip-E and Quipper code, and consists of eight sections:

Function name: the name of the Quipper program that we want to write;

Input qubits: the number of qubits in input to the Quipper program;

Recursive: if checked it automatically changes the type signature of the
program;

Entangλe 7

Output qubits: the number of output qubits, provided that the program is
non-recursive;

Type: switches the matrix representation from symbolic, which
uses embedded QPMC instructions, to numeric, which pro-
vides a numeric, MATLAB-style, representation of matrices,
and vice versa;

Swap: allows the selection of a different algorithm to build the swap
matrices, multiply generates the swaps using an algorithm
based on permutation by transposition, while single uses
an algorithm which outputs the matrix representation of the
swaps;

Function body: the body (i.e., the set of instructions in the right order)
of the quantum program to be translated. In this box it
is not required to provide the method signature since the
complete Quip-E program will be generated automatically
by Entangλe in the Code section;

Additional code: auxiliary Quipper/Haskell code that cannot be translated
from the function body;

Code: the final Quipper program, generated by Entangλe by using
all the information provided above. A .hs file with the code
can be downloaded by clicking the Download button.

In the Function body we constrained the programmer to a preferred coding
style, i.e., we restrict the Quip-E syntax to certain choices: the name of the
variables of type Qubit, if more than one, are denoted by qi, with i = 1, . . . , n,
with n number of input qubits, otherwise, if there is only one input qubit it
should be labeled q. Moreover, measured qubits cannot be re-initialized in the
last part of the body. The instruction order to be preserved is: unitary and
reset instructions, measurements, dynamic lifting, and control flow. Entangλe
translates tail recursive programs, thus the recursive call must be (when present)
the last instruction. A snapshot of the Quipper block can be seen in Figure 2.

3.2 Tree Block

The Tree block displays an abstract representation of the instructions in the
program. It represents the intermediate translation steps. In this block, each
quantum gate is associated to the qubits on which it is acting. Measurements
produce a binary branch terminating with two leaves which can be of different
type, according to the type of program that we want to translate. This block
can be hidden.

8 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

Fig. 2: Quipper Block

3.3 QPMC Block

The QPMC block displays the translation of the Quipper program into the
corresponding QPMC model. It provides both matrices and module to be checked
using QCTL. This final code can be downloaded as a .prism file and used as an
input for the QPMC model checker. A snapshot of the QPMC block can be seen
in Figure 3. For further references about the intermediate translation steps see
[1], [2].

4 Case Studies

We present here some results on the tests we performed on two quantum algo-
rithms. We tested Entangλe on both an instance of Grover’s quantum search
algorithm and on a tail-recursive version of the BB84 protocol.

4.1 Grover’s Quantum Search

The aim of this algorithm is searching for the index x of an element in a unstruc-
tured array of length N . We take N = 2n, so that the indexes are represented
by n-bit strings. The algorithm solves the problem by considering a function
f : {0, 1}n → {0, 1} such that f(x) = 1 if and only if the string x points to the

Entangλe 9

Fig. 3: QPMC Block

searched element. Classically, this problem can be solved in O(N) steps, while
using a quantum oracle it can be probabilistically solved in O(

√
N) steps. The

Grover algorithm gives in input to the quantum oracle all the possible strings
at the same time. Then it marks the strings corresponding to possible solutions
and it performs some steps to maximize the probability of getting the desired
result after the measurement. The result is the index of the searched element.
In general, the algorithm is probabilistic, but for N = 4 after one iteration it
behaves in a deterministic way, giving the right result with probability equal to
1. In our experiments we used N = 4.

We wrote an oracle which returns the string x = 3. The Quip-E, which in
this case is the same as the Quipper one, implementation can be seen below:

grover :: (Qubit , Qubit , Qubit) -> Circ (Bit , Bit)
grover (q1 ,q2,q3) = do

hadamard_at q1
hadamard_at q2
hadamard_at q3
qnot_at q3 ‘controlled ‘ [q1, q2]
hadamard_at q1
hadamard_at q2
gate_X_at q1
gate_X_at q2
hadamard_at q2
qnot_at q2 ‘controlled ‘ q1
hadamard_at q2
gate_X_at q1
gate_X_at q2

10 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

hadamard_at q1
hadamard_at q2
hadamard_at q3
measure (q1 ,q2)

Verification of Grover’s Quantum Search For space reasons we omit the
automatically generated QPMC code. A representation of the QMC can be seen
in the following:

s0 s1 s2 s3 s4 s5 s6 s7 s8

s9

s10

s11

s12

s13

s14

H qnot H X H qnot X H

M0

M1

M0

M1

M0

M1

According to the calculations we should reach the terminal state s14 with
probability equal to 1, while the other terminal states must have an associated
probability equal to 0. We tested QCTL formulae to evaluate the density matrix
associated to each terminal state with input state |1〉〈1| and the results are the
following:

qeval(Q=? [F (s = 11)], |1>_8 <1|_8);

0 0 0 0 0 0 0 0

0 -0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

qeval(Q=? [F (s = 12)], |1>_8 <1|_8);

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

qeval(Q=? [F (s = 13)], |1>_8 <1|_8);

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

qeval(Q=? [F (s = 14)], |1>_8 <1|_8);

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -0

0 0 0 0 0 0 0 1

The trace of the first three matrices is equal to 0, thus the probability of
reaching those states is null. The last matrix has trace equal to 1, thus the
computation will reach that state (s14). We also tested formulas to calculate the
accumulated superoperators for each state, but since the resulting matrices have
size 26 × 26 for space reasons we do not report them here. The results can be
found in the Examples folder at https://github.com/miniBill/entangle.

Entangλe 11

4.2 Recursive BB84

In this example we focus on protocols that use quantum effects, such as en-
tanglement, to guarantee secure communication between two parties (Alice and
Bob) communicating on classical channels. Errors of different type can occur
during the communication, in particular due to noise and decoherence effects.
Moreover, in QKD protocols such as BB84, we want not only to guarantee that
the channel is free of noise effects that could change the output, but also that no
eavesdropper could obtain the key the two parties are exchanging. In particular,
the BB84 protocol enables two parties sharing a random and secure key, which
could be used for classical encryption schemes such as the one-time pad.

The BB84 protocol between parties Alice and Bob works as follows:

1. Alice generates two classical, random, n-bit strings a = [a1, . . . , an] and
b = [b1, . . . , bn];

2. Alice generates a quantum state |Ψ〉 =
n⊗
i=1

|ψaibi〉 using the two strings; the

symbol
⊗

represents the tensor product; string b is used to determine in
which basis each element of string a will be encoded:

|ψ00〉 = |0 〉 |ψ10〉 = |1〉
|ψ01〉 = |+〉 |ψ11〉 = |−〉

3. The state |Ψ〉 is transmitted along a quantum channel to Bob;

4. Bob generates a classical, random, n-bit string b′ = [b′1, . . . , b
′
n] used to

determine in which basis measure |Ψ〉, obtaining the classical string a′ =
[a′1, . . . , a

′
n];

5. Alice and Bob compare, sending classical information on a public channel,
the strings b and b′: if there is any difference between them, the strings a and
a′ are considered not reliable, and then discarded, if they match the check
is passed. In the recursive version, instead of manually checking whether the
strings are reliable or not, this is done automatically by the algorithm that
restarts the protocol if the final check fails.

In this experiment, we implemented a BB84 protocol where only one-bit strings
are transmitted. This is the simplest setting possible and can be generalized to
strings of arbitrary length. Since quantum measurement outcomes are random,
we decided to generate the classical strings using this kind of technique, i.e., we
measure two qubits previously put in a uniform superposition by the application
of an Hadamard gate and then we get the classical outcome. The Quipper code
can be seen in the following:

12 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

BB84 rec (1)

bb84RecCirc :: (Qubit , Qubit , Qubit
, Qubit) -> Circ RecAction

bb84RecCirc (q1, q2, q3 , q4) = do

map_reset_at (q1,q2 ,q3)
map_hadamard_at (q1, q2,q3)
ma <- measure q1
mb <- measure q2
mb1 <- measure q3
a <-dynamic_lift ma
b <- dynamic_lift mb
b1 <- dynamic_lift mb1
if (False) && (not b)

then do
reset_at q4

else if True && (
not b)

then do

BB84 rec (2)

reset_at q4
gate_X_at q4

else if (False)
&& b

then do
reset_at q4
hadamard_at

q4

else do
reset_at q4
gate_X_at

q4
hadamard_at

q4
ma1 <- measure q4
a1 <- dynamic_lift ma1
exitOn $ b==b1 && a==a1

For space reasons we omit in this paper the QPMC code automatically gen-
erated by Entangλe (it can be found in the Examples folder on the Entangλe
repository). The abstract model of the quantum Markov chain can be seen in
Figure 4.

Reset Hadamard Measure

Succ

Fail

if- then- else

Generation of bit-strings

Enconding, transmission and check

Fig. 4: High level representation of recursive BB84 steps.

4.3 Verification of the BB84 model

We show here a test performed by using QCTL formulae [6]. In Figure 5 we show
an example of until formulae. The first two formulae show that both success and
failure states can be reached with probability > 0.3. The second set of formulae
bounds the probability that a state success is reached with a value < 0.5. By

Entangλe 13

Fig. 5: QCTL example test for recursive BB84 protocol.

generating the density matrices, and by computing the trace, these results are
consistent, since trace(SUCC)= 0.37500 and trace(FAIL) = 0.625006

5 Conclusions

In this work we presented Entangλe, a translation framework from Quipper pro-
grams to QPMC models. Other model checking techniques for quantum protocols
have been considered, e.g., in [8][9][3] and [4]. These techniques are interesting,
but they are either restricted to a particular class of quantum circuits, while
Quipper and QPMC provide a more flexible paradigm, or their implementation
was unavailable. Entangλe allows to both write and verify quantum protocols,
using an high-level programming language. It is able to translate also Quipper
programs in which measurement results may control termination of quantum
protocols and algorithms. We used Entangλe to translate and verify different
protocols, with the final results validating our expectations. Some steps have
been moved towards the optimization of our framework to verify more complex
quantum programs. More optimizations should be done from the model checking
point of view, involving the automatic verification of more complex properties,
i.e., entanglement and other quantum effects.

References

1. L. Anticoli, C. Piazza, L. Taglialegne, and P. Zuliani. Towards quantum programs
verification: From quipper circuits to QPMC. In Reversible Computation - 8th
International Conference, RC 2016, Bologna, Italy, July 7-8, 2016, Proceedings,
pages 213–219, 2016.

2. L. Anticoli, C. Piazza, L. Taglialegne, and P. Zuliani. Verifying quantum programs:
From quipper to QPMC. CoRR, abs/1708.06312, 2017.

6 Computed with MATLAB, using the density matrices generated by QPMC and the
formula qeval. Further examples are available at https://github.com/miniBill/

entangle/tree/master/res/Entangle_Tests

14 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

3. P. Baltazar, R. Chadha, and P. Mateus. Quantum computation tree logic – model
checking and complete calculus. International Journal of Quantum Information,
2008.

4. P. Baltazar, R. Chadha, P. Mateus, and A. Sernadas. Towards model-checking
quantum security protocols. In Proceedings of the first workshop on Quantum
Security: QSEC’07. ieee Press, 2007.

5. C.H. Bennett and G. Brassard. Quantum public key distribution reinvented.
SIGACT News, 18(4), 1987.

6. Y. Feng, E. M. Hahn, A. Turrini, and L. Zhang. QPMC: A Model Checker for
Quantum Programs and Protocols. In Nikolaj Bjørner and Frank D. de Boer,
editors, FM 2015: Formal Methods - 20th International Symposium, Oslo, June
24-26, 2015, Proceedings, Lecture Notes in Computer Science. Springer, 2015.

7. Y. Feng, N. Yu, and M. Ying. Model checking quantum Markov chains. Journal
of Computer and System Sciences, 2013.

8. S. Gay, R. Nagarajan, and N. Papanikolaou. Probabilistic model-checking of quan-
tum protocols. In Proceedings of the 2nd International Workshop on Developments
in Computational Models, 2006.

9. S. J. Gay, N. Papanikolaou, and R. Nagarajan. QMC: A model checker for quantum
systems. In In Proceeding of the 20th International Conference on Computer Aided
Verification, 2008.

10. A.S. Green, P.L. Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron. Quipper: A
Scalable Quantum Programming Language. SIGPLAN Not., 48(6), 2013.

11. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5), 1994.

12. E. Knill. Conventions for Quantum Pseudocode. Technical report, Los Alamos
National Laboratory, 1996.

13. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, LNCS,
volume 6806, 2011.

14. M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2011.

15. J. Preskill. Lecture Notes for Physics 229: Quantum Information and Computation.
CreateSpace Independent Publishing Platform, 1998.

16. J.M. Smith, N.J. Ross, P. Selinger, and B. Valiron. Quipper: concrete resource
estimation in quantum algorithms. Extended abstract for a talk given at the 12th
International Workshop on Quantitative Aspects of Programming Languages and
Systems, QAPL 2014, Grenoble. Available from arxiv1412.0625, 2014.

