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Abstract—Cyber-physical system models often feature stochas-
tic behaviour that itself depends on uncertain parameters
(e.g., transition rates). For these systems, verifying reachability
amounts to computing a range of probabilities depending on how
uncertainty is resolved. In general, this is a hard problem for
which rigorous solutions suffer from the well-known curse of
dimensionality. In this paper we focus on hybrid systems with
random parameters whose distribution is subject to nondetermin-
istic uncertainty. We show that for these systems the reachability
probability is a smooth function of the nondeterministic param-
eters, and thus Gaussian processes can be used to approximate
the reachability probability function itself very efficiently over its
entire domain. Furthermore, we introduce a novel approach that
exploits rigorous probability enclosures for training Gaussian
processes. We apply our approaches to non-trivial hybrid systems
case studies, and we empirically demonstrate their advantages
with respect to standard statistical model checking.

I. INTRODUCTION

Given a system model and a set of ‘goal’ states (indicating
(un)wanted behaviour), the reachability problem is: “can the
system evolution reach these states or not?” The corresponding
problem for stochastic systems is known as probabilistic
reachability, and it amounts to computing the probability that
the system reaches a goal state. In this paper we focus on
hybrid (discrete-continuous) systems [1], which are a very
successful framework for modelling cyber-physical systems
and biological systems (e.g., infusion pumps and cancer
therapies). However, the formal analysis of hybrid systems,
including reachability, is notoriously hard: It is well known
that the satisfiability of general real formulas (e.g., involving
trigonometric functions) is also an undecidable problem [2].
Furthermore, for all but the simplest hybrid systems (timed
automata) checking reachability is undecidable [3]. (See [4] for
an up to date survey on reachability for hybrid systems.) This
motivates us to find efficient and accurate statistical techniques
that can deal with realistic, nonlinear hybrid systems.

In this work, we address hybrid systems with random pa-
rameters whose distribution is subject to nondeterministic un-
certainty (for example, to account for changing environmental
conditions or individual patients variability). For these systems
we aim at solving (approximately) the bounded probabilistic
reachability problem, where ‘bounded’ means that we consider
only a finite number of discrete steps and finite time in the

system evolution. This problem amounts to computing a range
of reachability probabilities depending on how the nondeter-
ministic uncertainty in the system is resolved. State-of-the-art
statistical techniques [5], [6] struggle with nondeterministic
systems, and cannot fully compute the bounded reachability
probability function for the systems we consider.

In this paper, we motivate the use of, and apply Gaussian
Processes (GPs) for approximating the bounded reachability
probability function over the uncertain parameters domain. In
particular, we show that said function is smooth – infinitely
differentiable – with respect to the uncertain parameters, and
therefore GPs can approximate the function arbitrarily well. A
notable feature of GPs is that they offer an efficient analytical
approximation over the entire domain of the function. In
contrast, statistical model checking can only provide a point-
wise approximation.

In our context, building a GP approximation requires eval-
uating the reachability probability function at a finite number
of training points, which can be done via a Monte Carlo
approach [6] that returns statistical estimates of the function
value at each training point. In this paper, we propose a new
training approach which instead uses rigorous (non-statistical)
enclosures of the function [7]. Summarising, in this paper we
make the following contributions:

• we show that the reachability probability function for
our systems is a smooth function of the nondeterministic
uncertain parameters, thereby justifying the use of GP
approximations;

• we introduce a novel approach for GP training that com-
bines rigorous enclosures computed at sampled training
points;

• we compare GP approximation with statistical model
checking (SMC) on three non-trivial hybrid systems
models, and show that GP offer comparable accuracy to
SMC while requiring much less computational effort.

Related Work. We focus on works that combine verification
with GP-based methods, which are the main subject areas of
the paper. In [8] it is shown that the satisfaction probability
of temporal logic formulas over uncertain continuous-time
Markov chains is a smooth function of the nondeterministic
parameters, so GP approximation can be used. Online model
learning using stochastic hybrid systems based on GP has978-1-7281-9148-5/20/$31.00 © 2020 IEEE



been proposed, but without formal justification [9]. In [10],
GPs are used to compute reachable sets of (non-hybrid)
dynamic systems, but the authors directly assume smooth
system dynamics. In [11], GPs are used for the design of robust
systems by approximating and optimising the robustness score
of the system (given by the quantitative semantics of a
given Signal Temporal Logic formula). The basis of the GP
training algorithm we use was initially proposed in [12] and
then generalised in [13]. In [14], the authors consider GP
training using multiple annotators per input point, although
with binary values only. Statistical approaches are proposed
in [5], [6] for nondeterministic stochastic hybrid systems, but
can only compute the extrema of the reachability probability
function, while we analytically approximate it over its entire
domain. Very recent works develop a probably approximately
correct (PAC) learning framework for building linear models
of black-box systems [15] and PAC barrier certificates for
hybrid systems safety [16]. In the latter case appropriate
barrier certificate templates must be developed by the user,
rendering the technique only semi-automated, and in both
cases the system is assumed to be deterministic and all its
inputs are sampled (from scenario distributions). This means
the reachability probability function can only be evaluated
pointwise, as in statistical model checking. Our approach is
instead fully automated and allows dynamics that depends on
random and nondeterministic parameters, and offers an ana-
lytical approximation of the reachability probability function
over its full domain.

II. BACKGROUND

Hybrid systems. Stochastic Parametric Hybrid Systems
(SPHS) [6] combine discrete and continuous dynamic be-
haviour with continuous and discrete parameters whose values
are set in the initial state and remain unchanged during the
system evolution. The parameters can be nondeterministic and
probabilistic, in which case a probability measure is associated
to them. We define Stochastic nondeterministic Parametric
Hybrid Systems (SnPHS) as a subclass of SPHS [6] in which
only random parameters are allowed, and their probability
measure depends on nondeterministic parameters. Again, both
parameters remain fixed throughout the system evolution.

Definition 1. A Stochastic nondeterministic Parametric Hybrid
System (SnPHS) is a tuple 〈Q,Υ, X, P, Y, I,Ξ, jump, goal〉:
• Q = {q0, . . . , qm} a set of modes (discrete components

of the system),
• Υ = {(q, q′) : q, q′ ∈ Q} a set of transitions between

modes,
• X = [u1, v1] × · · · × [un, vn] ⊂ Rn a domain of

continuous variables,
• P ⊂ Rk is the (compact) nondeterministic parame-

ter space, with associated probability density functions
f1(·,p), ..., fr(·,p) for r random parameters with p ∈ P
and with domain R = [a1, b1]× · · · × [ar, br] ⊂ Rr,

• Y = {flowq : q ∈ Q} where flowq : X×R×[0, T ]→ X
is the continuous system dynamics,

• I = {initq : q ∈ Q} where initq : R→ X computes the
initial continuous state in mode q,

• Ξ = {reset(q,q′) : (q, q′) ∈ Υ} where reset(q,q′) : X ×
R×[0, T ]→ X defines the continuous state at time t = 0
in mode q′ after taking the transition from mode q.

and predicates (or relations)
• jump(q,q′)(x) ≡ discrete transition (q, q′) ∈ Υ occurs

upon reaching the jump condition in state (x, q) ∈ X ×
R× [0, T ]×Q,

• goalq(x) ≡ state x ∈ X × R × [0, T ] in mode q is a
goal state.

Furthermore, SnPHS restrict SPHS [6] by disallowing non-
deterministic jumps, i.e., we require that every resetq,q′ ∈ Ξ
is a Boolean predicate and their true preimages are disjoint.
We assume that the random parameters’ domain R does not
depend on the nondeterministic parameters p, but this is
not a restriction in practice. Indeed, the domain of certain
distributions (e.g., the uniform distribution) can depend on
nondeterministic parameters. However, it is possible to apply
a change of variable to make the domain independent of the
nondeterministic parameters (e.g., given a < b and a random
variable U uniformly distributed over an interval [0, 1], then
Z = (b − a)U + a is uniformly distributed over [a, b]). The
boundedness of R is also not a significant restriction – any
probability density can be approximated arbitrarily well by a
density with bounded support. The continuous dynamics Y is
made of Lipschitz-continuous ordinary differential equations
(ODEs), which have a unique solution for any initial condition
in X×R×[0, T ] according to the well-known Picard-Lindelöf
theorem.
Probabilistic Reachability. Two possible approaches to cir-
cumvent the undecidability of reachability include computing
rigorous enclosures [7] and verified confidence intervals [6].
Both approaches exploit δ-complete decision procedures [17].
Let φ be a sentence in the standard form:

φ = ∃I1x1, ...,∃Inxn :

m∧
i=1

(

ki∨
j=1

fij(x1, ..., xn) = 0) (1)

where the fij(x1, ..., xn) are (compositions) of Type 2-
computable (i.e., ‘numerically implementable’) real functions
[18] and the Ii are bounded intervals. Given δ ∈ Q+ and a
sentence φ as (1), the δ-decision problem is to decide correctly
one of the following about φ: unsatisfiable (φ is false), or δ-
satisfiable (φδ is true), where φδ is the δ-weakening of φ:

φδ = ∃I1x1, ...,∃Inxn :

m∧
i=1

(

ki∨
j=1

|fij(x1, ..., xn)| ≤ δ).

If the two cases overlap either answer can be returned. Stan-
dard bounded reachability questions over hybrid systems can
be coded as sentences as above and δ-decided by δ-complete
decision procedures [19], [20].

Moving towards probabilistic bounded reachability, the fol-
lowing definition is a specialisation of the corresponding
notion for SPHS [21].



Definition 2. [21] Given a SnPHS and reachability depth l∈N,
the bounded reachability probability function Pr:P → [0, 1]
is:

Pr(p) =

∫
G

dµ(p)

where µ(p) is the probability measure given by the product of
the probability densities f1(·,p), . . . , fr(·,p) and G = {x ∈
R : ∃π ∈ Π(l) : reach(π, x)} is the goal set; Π(l) is the
set of paths of length l in the SnPHS and reach(π, x) is the
formula in standard form (1) that defines l-step reachability
for path π and random parameter x:

reach(π, x) ≡ ∃[0,T ]t0, · · · ,∃[0,T ]tl−1,∃Xx0, · · · ,∃Xxl−1 :(
x0 = flowπ[0](initπ[0](x), x, t0)

) l−2∧
i=0

[
jump(π[i],π[i+1])

(xi, x, ti) ∧
(
xi+1 = flowπ[i+1](resetπ[i],π[i+1]

(xi, x, ti), x, ti+1)
)]
∧ goalπ[l−1]

(
xl−1, x, tl−1

)
.

We recall that in a SnPHS the predicates flow, init, jump,
reset and goal must involve Type 2 computable functions
only.
Gaussian Processes. We assume some familiarity with Gaus-
sian Processes, so here we only give a brief, high-level
presentation of the topic: for a longer presentation see [22],
and a thorough treatment can be found in [23]. Given a SnPHS
depending on (nondeterministic) parameters p ∈ P , our goal
is to estimate the (unknown) reachability probability function,
i.e., Pr(p) for every p ∈ P . We use a Bayesian approach,
which means that Pr will be approximated by the posterior
distribution of a stochastic process over P , given a set of
observations of Pr at points p1, . . . ,pN in P . In particular,
we first need to define a prior distribution, which describes
our “guess” about the unknown function, i.e., Pr. Then it is
necessary to determine the functional form of the likelihood.
The final step is computing the posterior distribution given
the observations, via the Bayes theorem and the likelihood
function. We obtain the required estimate and confidence
interval for Pr for any point in P by evaluating the statistics
of the induced posterior distribution.

For prior we choose a Gaussian Process (GP). Given an
unknown smooth real function and a set of function evaluations
at a finite set of training input points, a GP offers a statistical,
analytical approximation for said function over its entire
domain, with asymptotic guarantees of accuracy with respect
to the number of training points. (Essentially, given N training
points, a GP approximates the unknown function by a N -
dimensional Gaussian distribution whose covariance matrix
is obtained by integrating so-called basis functions evaluated
at the training points [22].) We show in Theorem 1 that the
Pr function is smooth, hence justifying our use of GPs for
approximating it. We again emphasise that statistical model
checking only gives point-wise approximations.

The observations of function Pr necessary to train a GP are
obtained by checking probabilistic reachability over a finite set

of points in the uncertain parameter space P . Such points con-
stitute the GP training set, and can be generated by a simple
partition of P or more effectively by using low-discrepancy
sequences, e.g., quasi-Monte Carlo [24]. Pseudocode for GP
training via sampling can be found in Algorithm 1.

Evaluating reachability in a SnPHS for a given p ∈ P
returns Boolean observations distributed as a Bernoulli with
parameter Pr(p). For each p in the training set we generate
S observations, thus distributed as a Binomial(S,Pr(p))
random variable. Closed-form solutions for GP posterior in-
ference typically require a normal likelihood, while in our
case we have Bernoulli’s. To solve this problem we apply the
approach presented in [8]. Specifically, one first needs to map
probabilities to the full real line, which can be done via the
inverse probit transformation:

∀w ∈ [0, 1], ζ ∈ R Ψ(w) = ζ ⇔ w =

∫ ζ

−∞
N (0, 1),

where N (0, 1) is the standard Gaussian density (with mean
zero and variance 1). Then, for each point pi in a training set
p1, . . . ,pN ∈ P , our data Oi consist of S binary outcomes
sampled from a Bernoulli with parameter Pr(pi) (see Algo-
rithm 1). Thus, the joint probability of function Pr(p) and
outcomes O is:

p(O,Pr(p)) = GP(Ψ(Pr(p)))

N∏
i=1

S∏
j=1

Bernoulli(Oi,j |Pr(pi)).

Algorithm 1 Sampling Pr for GP training
Input: H : SnPHS, l ∈ N : reachability depth, δ > 0 : solver

precision, N : number of training points, S : number of
samples per training point.

Output: X = x1, . . . , xN training points, Y = y1, . . . , yN
probability values.

1: n← 0;
2: for n < N do
3: v ← 0;
4: d← 0;
5: xn ← QMC sample(P ); . sampling

nondeterministic parameters via Quasi-Monte Carlo
6: for d < S do
7: rnd←MC sample(R); . Monte Carlo

sampling random parameters
8: d← d+ 1;
9: . formally evaluate reachability - see Section 4.2

in [25]
10: switch evaluate(H, l, xn, rnd, δ) do
11: case unsat do v ← v + 1; . count

decidable unsatisfiable reachability only, anything else is
deemed satisfiable

12: end for
13: yn ← (S − v)/S; . estimate Pr(xn)
14: n← n+ 1;
15: end for



Finally, the value of the target function at a new point
p∗ ∈ P (i.e., Pr(p∗)) is approximated by the mean of
the posterior distribution of the function at p∗, given the
observations Pr(p1), . . . ,Pr(pN ). As observed in [8], this
can be achieved efficiently via the Expectation-Propagation
(EP) algorithm [12], [13]. From the posterior variance one
can compute confidence intervals for Pr(p∗) with arbitrary
coverage probability by modifying the standard GP regression
technique as shown in Algorithm 2, which we dubbed GP-EP.
(More details about the GP-EP approach can also be found in
Appendix A and B.)

Algorithm 2 GP-EP regression (adapted from Algorithm 3.6
in [23])
Input: k : covariance function, p∗ : nondeterministic test

point, c ∈ (0, 1) : confidence (coverage probability), ὼ,
ὴ : natural site parameters (computed by Expectation-
Propagation)

Output: ȳ∗: mean Pr(p∗) value, Low: lower CI bound, Up
: upper CI bound

1: L← cholesky(In + Č
1
2KČ

1
2 );

2: ζ ← Č
1
2L>\(L\(Č 1

2Kὼ));
3: ȳ∗ ← k(p∗)>(ὼ − ζ); . compute mean value (Eqs.

(3.60) and (3.71) [23])
4: t← L\(Č 1

2 k(p∗)); . see Eq. (3.61) [23]
5: V(y∗)← k(p∗,p∗)− t>t;
6: Low,Up← CDF(ȳ∗ ∓ CDF−1(1− (1− c)/2)V(y∗)); .

compute confidence interval of coverage at least c (Eq.
(3.72) [23])

III. PROBABILISTIC REACHABILITY SMOOTHNESS

In this section we prove that the reachability probability
function of a SnPHS is, under reasonable conditions, a smooth
function of the uncertain parameters. This result is crucial
for justifying the use of GP to approximate the reachability
probability function.

Theorem 1. Let H be an SnPHS in which the random
parameter densities are smooth, i.e., fi(x,p) ∈ C∞(R × P )
for all 1 6 i 6 r. Then, the reachability probability function
of H is a smooth function of the uncertain parameters, i.e.,
Pr(p) ∈ C∞(P ).

Proof. We recall that P ⊂ Rk, R ⊂ Rr and G are the
uncertain parameters space, random parameters domain and
goal set of the SnPHS H , respectively. We need to show that
the function of Definition 2:

Pr(p) =

∫
G

dµ(p) =

∫
R

IG dµ(p)

admits derivatives of any order, where IG is the indicator func-
tion over G. Since the random parameters are independent, we
can rewrite the above as:

Pr(p) =

∫
R

IG(x)F (x,p) dx

where x ∈ Rr and F (x) = Πr
i=1fi(xi,p) is the product

measure obtained from the random parameters’ densities. For
clarity of presentation, we assume that p is a single uncertain
parameter, i.e., k = 1. The extension to multiple uncertain
parameters (k > 1) is easily obtained by considering each
coordinate.

Since
∫
R
IG(x) dx < ∞ (recall R is a bounded set), by

Lebesgue’s criterion [26, Theorem 1, Sect. 11.1] the function
IG is continuous almost everywhere on R. Let D ⊂ R be
the set of points at which IG is discontinuous. Since D has
measure zero we have that

Pr(p) =

∫
R\D

IG(x)F (x,p) dx (2)

and by the hypothesis on the densities fi’s the function
IG(x)F (x,p) is then continuous over R\D × P and has
continuous partial derivative with respect to p. Therefore, by
Eq. (2) and Leibniz’s rule [26, Proposition 2, Sect. 17.5.1], we
have that

dPr(p)

dp
=
d
∫
R\D IG(x)F (x,p) dx

dp
=

=

∫
R\D

∂IG(x)F (x,p)

∂p
dx =

∫
R\D

IG(x)
∂F (x,p)

∂p
dx

and dPr(p)
dp is a continuous function over P by [26, Proposition

1, Sect. 17.5.1]. The proof now simply proceeds by induction
on the order of the derivative, and the smoothness hypothesis.

In our case studies we shall use normally-distributed random
parameters: it is easy to show that Gaussian densities satisfy
the hypothesis of Theorem 1.

IV. GAUSSIAN PROCESS TRAINING WITH ENCLOSURES

We now present a novel approach that uses rigorous enclo-
sures for Pr, rather than point approximations, for training a
GP. There is an algorithm [7] that computes such enclosures
for the range of function Pr over its full domain. However,
for our purposes we do not need to have so much information.
Instead, we compute enclosures on a selection of training
points only, chosen over the nondeterministic parameter’s
space (again, the training points may be sampled via a quasi-
Monte Carlo algorithm for better coverage of the parameter
space). Therefore, for any p ∈ P we can compute enclosures,
i.e., absolutely precise upper and lower bounds, for Pr(p).

We now simply train two GPs, one with the upper bounds
and one with the lower bounds for Pr(pi) on a training set
p1, . . . ,pN ∈ P , and so we need to run two GP regressions,
as well. The GP regression output will then provide estimated
mean approximation and two confidence intervals (CIs): a
lower CI [L,L] and an upper CI [U,U ], for the two function
approximations. If both CIs are computed with coverage prob-
ability c, then it is obvious that [L,U ] is a CI with coverage
c for Pr(pi). The pseudocode is sketched in Algorithm 3.

This approach, dubbed GP-Enc, essentially replaces the
(possibly large number of) Monte Carlo simulations needed



for accurately evaluating Pr(p) in the GP-EP approach with
absolutely correct bounds for Pr(p). This could be a signifi-
cant advantage when analysing rare-event probabilities, which
are a well-known crux for Monte Carlo techniques because
of the exceedingly large sample sizes required. However,
the computational complexity of computing the enclosures
grows exponentially in the number of random parameters
of the systems and in the enclosure precision required (the
GP-EP approach does not instead suffer from this curse of
dimensionality). Therefore, an acceptable tradeoff between
accuracy of the rigorous enclosures and computational effort
should be determined when using GP-Enc for a given system.

Finally, the computational complexity of GP-Enc remains
O(N3) for N training points [23] (as for the GP-EP approach).

Algorithm 3 GP-Enc regression (adapted from Algorithm 2.1
in [23])
Input: k : covariance function, Lup: list of upper bounds

of probability enclosures, Llow: list of lower bounds of
probability enclosure, p∗ : nondeterministic test point,
c ∈ (0, 1) : confidence (coverage probability)

Output: CIs with coverage c.
1: Sup ← cholesky(K(Lup) + σ2I); . compute Cholesky

decomposition (see [23, Appendix A.4])
2: αup ← S>up\(Sup\(Lup);
3: ȳ∗up ← k>∗ αup; . compute mean value (Eq. (2.25) [23])
4: tup ← Sup\k∗;
5: Vup(y∗up)← k(p∗,p∗)− t>uptup; . compute variance

(Eq. (2.26) [23])
6: U ← CDF(ȳ∗up + CDF−1(1− (1− c)/2)Vup(y∗up)); .

compute CI upper bounds for Lup points
7: 〈 repeat steps 1-5 for Llow points 〉
8: L← CDF(ȳ∗lo − CDF−1(1− (1− c)/2)Vlo(y∗lo)); .

compute CI lower bounds for Llow points
9: return [L,U ]

V. EXPERIMENTS

In our experiments we apply to three models the GP-EP
approach, the GP-Enc approach, and statistical model checking
(SMC) using confidence interval (CI) estimation based on the
standard Clopper-Pearson technique [27].

We used the ProbReach tool [7], which allows computing
bounded reachability in stochastic parametric hybrid systems.
ProbReach can use either dReal [28] or iSAT-ODE [19] for
analysing (non-probabilistic) bounded reachability question.
We implemented in ProbReach the GP-EP algorithm and
the GP-Enc approach (available at https://github.com/dreal/
probreach). In our experiments we used ProbReach with
dReal3 (version 3.16.08.01) with precision δ = 0.001 (except
where noted) on a 32-core, 2.9GHz Ubuntu 16.04 machine.

A. Models

a) UVB Irradiation Therapy for Treating Psoriasis:
We use a simplified version of an Ultra-Violet B (UVB)
irradiation therapy model [29] for the treatment of psoriasis,

an immune system-mediated chronic skin condition which is
characterised by overproduction of keratinocytes. The model
consists of three types of keratinocytes: stem cells (SC),
transit-amplifying cells (TA) and growth-arrested cells (GA)
which can all be normal and psoriatic. The model’s (nonlinear)
ODEs are given below, where the psoriatic species are denoted
by a d (disease) subscript

dSC

dt
= γ1

ω(1− SC+λSCd
SCmax

)SC

1 + (ω − 1)(TA+TAd
Pta,h

)n
− β1InASC−

− k1sω

1 + (ω − 1)(TA+TAd
Pta,h

)nSC + k1TA
;

dTA

dt
=

k1a,sωSC

1 + (ω − 1)(TA+TAd
Pta,h

)n
+

+
2k1sω

1 + (ω − 1)(TA+TAd
Pta,h

)n + γ2GA− β2InATA− k2sTA− k1TA
;

dGA

dt
= (k2a,s + 2k2s)TA− k2GA− k3GA− β3GA;

dSC d

dt
= γ1d(1−

SC + SC d

SCmax,t
SC d − β1dInASC d−

− k1sdSC d −
kpSC

2
d

k2a + SC 2
d

+ k1dTAd);

dTAd
dt

= k1a,sdSC d + 2k1sdSC d + γ2dTAd + k2dGAd−

− β2dInATAd − k2sdTAd − k1dTAd;

dGAd
dt

= (k2a,sd + 2k2sd)TAd − k2dGAd − k3dGAd − β3dGAd.

The therapy involves a series of UVB irradiation episodes,
which are simulated in the model by increasing InA times
the apoptosis rate constants β1 and β2 for SCs and TA
cells, respectively. The duration of each episode is 48 hours,
followed by 8 hours of rest (InA = 1), before the next
irradiation can be started.

The efficacy of the therapy depends on the apoptosis rate
(modified by InA) and on the number of irradiation episodes.
An insufficient number of treatments can lead to psoriasis re-
lapse: the deterministic variant of this model predicts psoriasis
relapse for less than seven treatments [29]. Our model has one
random parameter InA ∼ N(µ, 10,000), which depends on
the uncertain parameter µ ∈ [55,000 , 65,000] to model inter-
patient variability. We compute the probability of a relapse
within a year (except were noted) following a seven-treatment
therapy.

b) Pharmocokinetics Model for Anaesthesia Deliv-
ery: This case study considers a pharmacokinetics model for
anaesthesia delivery which tracks how the drug concentration
changes as it is being metabolised by the body [30]. The model
features three species: cp - concentration of the drug in the
plasma, c1 (c2) - concentration of the drug in the fast (slow)
peripheral compartment, and u - drug infusion concentration.



The model’s ODEs are:
dcp(t)

dt
= −(k10 + k12 + k13)cp(t) + k12c1(t)+

k13c2(t) +
u(t)

V1
dc1(t)

dt
= k21cp(t)− k21c1(t)

dc2(t)

dt
= k31cp(t)− k31c2(t)

du(t)

dt
= p cos(

2tπ

T
).

We assume that the drug delivery is continuous, except that
every T = 15 minutes (starting at time 0) the drug infusion
rate is subject to random errors. We compute the probability
of reaching the unsafe state:

(cp(t) ≥ 6) ∨ (cp(t) ≤ 1) ∨ (c1(t) ≥ 10) ∨ (c1(t) ≤ 0)∨
∨ (c2(t) ≥ 10) ∨ (c2(t) ≤ 0)

in one jump within 60 minutes. The model features one
random parameter (reset value of u) u0 ∼ N(µ, 1,000), which
depends on the uncertain parameter µ ∈ [6,000 , 8,000] that
models the discrepancy of the infusion device from its nominal
behaviour (due to, e.g., aging and wear of the mechanical
components).

c) Deceleration Model: This model describes a car
deceleration scenario [21]. In the first mode the car accelerates
from 0 to 27.78 m/s (0 to 100 km/h). During this period
its velocity changes according to dυ(t)

dt = α exp (−αt+ β)−
cdv

2(t), where α = 0.05776 and β ∼ N (µ, σ) are coefficients
modelling the acceleration characteristics of the car, which
depend on the nondeterministic parameters µ ∈ [3.9, 4.1],
σ ∈ [0, 0.2] and cd = 3.028 ·10−4 m−1 is the drag coefficient.

When the target velocity 27.78 m/s is achieved, it takes
treact = 1.2 seconds for the driver to react and to begin
decelerating. There is no acceleration of the car in the “re-
action” mode, and its velocity is controlled by the equation
dυ(t)
dt = −cdv2(t). In the final (braking) mode the car’s

deceleration is governed by the equation dυ(t)
dt = µad−cdv2(t)

where ad = −4m/s−2 is the car’s braking force, and µ = 1
is the coefficient modelling the road characteristics, such as
slope, friction, etc. The distance s(t) covered by the car is
controlled by ds(t)

dt = υ(t). We calculate the probability of the
car stopping within 400 meters in the braking mode.

B. Results

a) Accuracy and cost of GP-EP vs. SMC: We compare
the accuracy of GP-EP with SMC using the average CI interval
size and root mean squared error (RMSE) of our estimates
across all input points.

As it can be seen in Table I, GP-EP offers not only shorter
intervals but also smaller standard deviation for both the tested
models over a different number of points and samples with
0.99 confidence. (The same trend holds for 0.99999 confidence
– see Table II in the Appendix). For example, for the Psoriasis
model with n = 20 training points and S = 200 samples,

GP-EP has 0.0727 average interval size while SMC has as
much as 0.4014 (see Table I). Also, in Figure 1 it is clearly
visible that GP-EP provides smaller CIs than SMC. It is also
important to note that GP-EP presents a much smoother mean
curve in comparison to SMC, and that even for small sample
sizes (S = 20) the GP-EP CIs intersect the rigorous enclosures
(computed by ProbReach’s formal approach) in most, but not
all, cases. Increasing S to 100 results in all the GP-EP CIs
intersecting the rigorous enclosures – see Figure 1 (b) and
Figure 2 (b).

The comparison of RMSE ± standard deviation (see Table
IV) shows that for the tested models GPs are more accurate
than SMC. In Table IV, the true probability values used to
compute the RMSE were calculated via 10,000 SMC simu-
lations. (We also note that the RMSE for both GP and SMC
approaches do not depend on the confidence level because that
is used only to construct the CI bounds, so for all confidence
levels the result of RMSE depends only on the number of
points, samples, and parameters of the chosen model.)

As described in Section II, GP-EP has a significant compu-
tational advantage after the training process, because any sub-
sequent test input can be calculated using a simple regression
process, which is relatively fast and does not require further
sampling. Table V reports the total CPU time in seconds
needed to construct CIs by GP-EP and SMC for the first n
randomly chosen points + second n randomly chosen points.
As it was noted above, the GP testing process is relatively
fast, however, it takes time to recompute all the covariances
according to the new testing points, while for SMC almost all
the time is spent on sampling. As the Psoriasis and Anaesthesia
models are non-trivial to simulate, Table V shows a significant
GP-EP advantage for all points and sample sizes over SMC. It
is however conceivable that with ‘lighter’ models SMC could
be faster than GP-EP. In fact, the Deceleration model is faster
to simulate, and it can be seen from Table V that SMC is
generally faster than GP-EP (except for S > 100).

b) Accuracy and Cost of GP-Enc: We compare two
versions of the GP-Enc approach (with enclosures precision
equal to 0.1 and 0.001, respectively) with the GP-EP approach
with different number of samples per every training point.

As it can be seen in Table III, where the average CI
size comparison is presented, GP-Enc gives better (tighter)
intervals than GP-EP only when precision ε = 0.001 is used
for GP-Enc training, irrespective of the sample size S used
by GP-EP. This advantage holds for all the models. The
advantage of the GP-Enc approach also potentially depends
on the models’ complexity and probability function placing
(far or close to the 0-1 borders).

Figure 3 shows these results in a graphical way. In partic-
ular, Figure 3(a) shows that the GP-EP CIs are smaller than
GP-Enc’s when using precision 0.1 for the training part in GP-
Enc. However, when precision 0.001 is used (Figure 3(b)), the
GP-Enc CIs become smaller (i.e., more precise) than GP-EP’s.

Finally, with respect to computational cost, Table VI reports
the total CPU time difference in seconds between the GP-
EP and GP-Enc approaches. It can be seen that for the



Model n S=20 S=100 S=200
SMC GP-EP SMC GP-EP SMC GP-EP

Psoriasis
20 0.5471±0.0179 0.0871±0.0162 0.4627±0.0165 0.0731±0.0157 0.4014±0.0162 0.0727±0.0156

100 0.4827±0.0162 0.0673±0.0158 0.3854±0.0157 0.0565±0.0155 0.3365±0.0156 0.0525±0.0154
200 0.4013±0.0157 0.0495±0.0156 0.3264±0.0153 0.0384±0.0153 0.3245±0.0153 0.0371±0.0152

Anaesthesia
20 0.4008±0.1188 0.0687±0.0389 0.2891±0.0543 0.0613±0.0291 0.1334±0.0389 0.0518±0.0286

100 0.3932±0.1203 0.0326±0.0216 0.2291±0.0523 0.0295±0.0139 0.1286±0.0337 0.0238±0.0138
200 0.3622±0.1141 0.0286±0.0164 0.1891±0.0467 0.0211±0.0119 0.1124±0.0311 0.0205±0.0097

Deceleration
20 0.3635±0.1232 0.0879±0.0742 0.1723±0.1138 0.0842±0.0683 0.1271±0.1139 0.0831±0.0628

100 0.3551±0.1236 0.0488±0.0715 0.1621±0.1125 0.0469±0.0625 0.1106±0.1116 0.0454±0.0605
200 0.3553±0.1221 0.0396±0.0667 0.1559±0.1120 0.0385±0.0502 0.1042±0.0928 0.0356±0.0539

Table I
AVERAGE CI SIZE ± STANDARD DEVIATION FOR SMC vs. GP-EP, OBTAINED VIA PROBREACH, WITH SOLVER δ PRECISION EQUAL TO 10−3 AND 0.99

CONFIDENCE LEVEL FOR 10 INDEPENDENT RUNS OF THE EXPERIMENT, n - NUMBER OF TRAINING POINTS IN THE UNCERTAIN PARAMETER DOMAIN AND
S - NUMBER OF SAMPLES PER POINT. MIN BETWEEN SMC AND GP-EP RESULTS REPORTED IN bold.

Model n S=20 S=100 S=200
SMC GP SMC GP SMC GP

Psoriasis
20 0.7867±0.0246 0.1486±0.0212 0.5633±0.0214 0.1135±0.0197 0.4726±0.0211 0.1034±0.0196

100 0.7694±0.0214 0.1122±0.0189 0.5464±0.0193 0.1115±0.0185 0.4964±0.0191 0.1113±0.0184
200 0.7602±0.0158 0.0914±0.0147 0.5325±0.0152 0.0909±0.0144 0.4867±0.0151 0.0908±0.0143

Anaesthesia
20 0.6375±0.1246 0.1176±0.0637 0.3428±0.0951 0.1106±0.0486 0.2236±0.0668 0.1083±0.0482

100 0.6304±0.1213 0.0564±0.0364 0.3246±0.0903 0.0426±0.0276 0.2175±0.0651 0.0341±0.0235
200 0.6296±0.1172 0.0735±0.0348 0.3133±0.0885 0.0361±0.0171 0.2134±0.0651 0.0322±0.0155

Deceleration
20 0.5883±0.1392 0.1395±0.1047 0.3329±0.1152 0.1366±0.0952 0.2598±0.0921 0.1278±0.0883

100 0.5802±0.1337 0.0921±0.0963 0.3265±0.1097 0.0885±0.0726 0.2544±0.0889 0.0858±0.0691
200 0.5813±0.1366 0.0782±0.0846 0.3188±0.1095 0.0651±0.0657 0.2116±0.0831 0.0519±0.0634

Table II
AVERAGE CI SIZE ± STANDARD DEVIATION FOR SMC vs. GP-EP, OBTAINED VIA PROBREACH, WITH SOLVER δ PRECISION EQUAL TO 10−3 AND

0.99999 CONFIDENCE LEVEL FOR 10 INDEPENDENT RUNS OF THE EXPERIMENT, n - NUMBER OF TRAINING POINTS AND S - NUMBER OF SAMPLES PER
TRAINING POINT. MIN BETWEEN SMC AND GP-EP RESULTS REPORTED IN bold.

Model GP-Enc GP-EP
S=20 S=50 S=200 S=1,000 S=3,000

Anaesthesia ε = 0.1 -0.2313±0.0156 -0.2355±0.0154 -0.2482±0.0151 -0.2515±0.0147 -0.2583±0.0144
ε = 0.001 0.0387±0.0095 0.0345±0.0094 0.0264±0.0088 0.0192 ±0.0087 0.0119±0.0085

Psoriasis* ε = 0.1 -0.2736±0.0235 -0.2794±0.0201 -0.2835±0.0193 -0.2868±0.0182 -0.2994±0.0173
ε = 0.001 0.0784±0.0117 0.0711±0.0104 0.0675±0.0098 0.0632 ±0.0097 0.0595±0.0095

Deceleration ε = 0.1 -0.1247±0.0137 -0.1285±0.0132 -0.1311±0.0132 -0.1375±0.0128 -0.1494±0.0127
ε = 0.001 0.0617±0.0104 0.0587±0.0101 0.0511±0.0092 0.0468 ±0.0093 0.0398±0.0091

Table III
AVERAGE CI SIZE (± STANDARD DEVIATION) DIFFERENCE BETWEEN THE GP-EP AND GP-ENC APPROACHES (GP-EP − GP-ENC), OBTAINED FOR 20

TRAINING POINTS WITH 0.99 CONFIDENCE FOR 10 INDEPENDENT RUNS OF THE EXPERIMENT, ε - TRAINING ENCLOSURE PRECISION (GP-ENC ONLY), S -
NUMBER OF SAMPLES PER TRAINING POINT (GP-EP ONLY); * = PSORIASIS RELAPSE CHECKED WITHIN HALF A YEAR. RESULTS IN bold SHOW

ADVANTAGE FOR GP-ENC.

Model n S=20 S=100 S=200
SMC GP-EP SMC GP-EP SMC GP-EP

Psoriasis
20 0.0756±0.017 0.0593±0.016 0.0584±0.014 0.0485±0.012 0.0388±0.011 0.0347±0.011

100 0.0566±0.015 0.0416±0.015 0.0496±0.013 0.0295±0.011 0.0352±0.012 0.0208±0.011
200 0.0393±0.012 0.0317±0.012 0.0279±0.011 0.0218±0.009 0.0218±0.009 0.0159±0.006

Anaesthesia
20 0.0663±0.042 0.0573±0.038 0.0473±0.027 0.0375±0.023 0.0311±0.021 0.0288±0.017

100 0.0573±0.035 0.0419±0.024 0.0357±0.017 0.0285±0.016 0.0239±0.016 0.0184±0.014
200 0.0512±0.028 0.0375±0.021 0.0326±0.016 0.0273±0.014 0.0225±0.013 0.0153±0.011

Deceleration
20 0.0652±0.027 0.0478±0.025 0.0421±0.018 0.0316±0.011 0.0359±0.014 0.0264±0.010

100 0.0515±0.025 0.0402±0.017 0.0377±0.011 0.0263±0.008 0.0321±0.011 0.0207±0.007
200 0.0463±0.017 0.0325±0.012 0.0312±0.009 0.0293±0.008 0.0258±0.009 0.0167±0.006

Table IV
ROOT-MEAN-SQUARE ERROR ± STANDARD DEVIATION FOR SMC vs. GP-EP, OBTAINED VIA PROBREACH, WITH SOLVER δ PRECISION EQUAL TO 10−3

AND 0.99 CONFIDENCE LEVEL FOR 10 INDEPENDENT RUNS OF THE EXPERIMENT, n - NUMBER OF TRAINING POINTS AND S - NUMBER OF SAMPLES PER
POINT. MIN BETWEEN SMC AND GP-EP RESULTS REPORTED IN bold.



(a) 20 samples (b) 100 samples
Figure 1. Model: Psoriasis. Formal enclosures, GP-EP and SMC CI (0.99 confidence) comparison with respect to uncertain parameter µ for 20 training points
and a) 20 samples and b) 100 samples per training point; 10 independent runs of the experiment.

(a) 20 samples (b) 100 samples
Figure 2. Model: Anaesthesia. Formal enclosures, GP-EP and SMC 0.99 CI comparison with respect to one uncertain parameter µ for 20 training points and
a) 20 samples and b) 100 samples per training point, for 10 independent runs of the experiment.

smaller number of samples (20 and 50) the GP-EP approach
outperforms the GP-Enc approach. The picture changes with
the increase of the number of samples (S) per training point,
so that for S = 1,000 and S = 3,000 the GP-Enc approach
significantly outperforms the GP-EP approach (standard de-
viations are not reported due to their being smaller than
0.0001). We also note that despite the Psoriasis model being
more computationally demanding than the other two models,
the GP-EP approach shows significantly smaller CPU time
increase for all number of samples in comparison with the
GP-Enc approach.

However, when increasing the precision of the enclosure
computation of the GP-Enc approach and for models with
probability values far from the bounds, the CPU time dif-
ference will increase in favour of GP-EP. At the same time
with the increase in the number of samples for the GP-
EP approach, the GP-Enc approach still can show better
results. For example, for the Anaesthesia model the CPU
computation time difference between the GP-Enc approach
with 0.1 precision and GP-EP approaches 100 samples is 114,
while for GP-EP approaches for 3,000 samples it is 25,836
(see Table VI).



Model n S=20 S=50 S=100 S=200
SMC GP-EP SMC GP-EP SMC GP-EP SMC GP-EP

Psoriasis
20+20 4,628 2,396 10,027 5,577 20,168 11,473 39,208 19,808

100+100 23,879 11,973 53,190 27,890 118,350 57,398 172,908 98,145
200+200 46,284 24,371 114,326 56,150 237,364 115,065 391,879 198,075

Anaesthesia
20+20 648 338 946 598 2,753 1,386 4,853 2,649

100+100 3,306 1,626 5,374 2,684 13,998 6,959 25,863 13,250
200+200 7,764 3,871 12,854 7,453 28,278 14,139 43,634 26,438

Deceleration
20+20 31 43 112 75 128 117 263 174

100+100 142 357 253 418 625 563 1353 996
200+200 315 982 746 1,450 1,250 1,896 2,568 2,473

Table V
TOTAL CPU TIME (SEC) NEEDED TO CONSTRUCT A CI BY GP-EP (ONE TRAINING AND TWO TESTING) AND BY SMC FOR THE FIRST n RANDOMLY

CHOSEN POINTS + SECOND RANDOMLY n CHOSEN POINTS, S - NUMBER OF SAMPLES PER POINT; 10 INDEPENDENT RUNS OF THE EXPERIMENT. MIN
BETWEEN SMC AND GP RESULTS REPORTED IN bold.

(a) Enclosure precision = 0.1 (b) Enclosure precision = 0.001
Figure 3. Model: Anaesthesia. GP-Enc (with two precisions) and GP-EP approaches 0.99 confidence CIs comparison with respect to uncertain parameter µ
for 20 training points and 100 samples per training point (GP-EP only).

VI. CONCLUSIONS

This paper offers contributions on two different levels to the
verification of uncertain stochastic hybrid systems. Our main
theoretical result is a proof that the reachability probability
function for the considered systems is, under mild conditions,
a smooth function of the uncertain parameters of the model.
Hence, Gaussian process (GP) techniques can be used to
obtain an efficient analytical approximation of the function.

Furthermore, we have introduced an approach (GP-Enc)
that leverages probability enclosures for training GPs instead
of Monte Carlo simulations. We have empirically compared
GP-Enc, statistical model checking and GP with expectation-
propagation (GP-EP) on three non-trivial hybrid systems
models, and have shown that GPs are usable in practice
even for systems with complex dynamics. Summarising, our
experiments have shown that:
• for small sample sizes, GP-EP can return confidence

intervals an order of magnitude smaller than statistical
model checking;

• GP-EP can be twice as fast than statistical model check-
ing when evaluating multiple points of the reachability
probability function;

• the GP-Enc approach can be much more efficient than
GP-EP when very narrow confidence intervals are re-
quired.

We conclude that for analysing probabilistic reachability in
uncertain stochastic hybrid systems, GPs offer an all-around,
efficient technique which in many cases can replace statistical
model checking. In the future we plan to investigate GP
approaches for uncertain rare events, where the reachability
probability function is extremely close to 0. This is an im-
portant practical problem, which in the GP setting is made
interesting by the high computational costs for computing
probability enclosures in GP-Enc and the large sample sizes
required by statistical model checking and GP-EP. As such,
efficient solutions are needed.



Model GP-Enc GP-EP
ε=0.1 ε=0.001 S=20 S=50 S=100 S=200 S=1,000 S=3,000

Anaesthesia 1,534 5,067 321 596 1,564 2,646 11,365 28,579
Psoriasis* 5,285 23,671 476 753 1865 2,834 14,033 33,843

Deceleration 264 841 29 57 88 149 516 1,246
Table VI

CPU TIME (SEC) FOR TRAINING GP-ENC AND GP-EP, ε - TRAINING ENCLOSURE PRECISION (GP-ENC ONLY), FOR 20 TRAINING POINTS FOR 10
INDEPENDENT RUNS OF THE EXPERIMENT, S - NUMBER OF SAMPLES PER TRAINING POINT (GP-EP ONLY); * = PSORIASIS RELAPSE CHECKED WITHIN

HALF A YEAR.
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[4] M. Fränzle, M. Chen, and P. Kröger, “In memory of Oded Maler: Au-
tomatic reachability analysis of hybrid-state automata,” ACM SIGLOG
News, vol. 6, no. 1, pp. 19–39, 2019.

[5] C. Ellen, S. Gerwinn, and M. Fränzle, “Statistical model checking for
stochastic hybrid systems involving nondeterminism over continuous
domains,” International Journal on Software Tools for Technology
Transfer, vol. 17, no. 4, pp. 485–504, 2015.

[6] F. Shmarov and P. Zuliani, “Probabilistic hybrid systems verification
via SMT and Monte Carlo techniques,” in HVC, ser. LNCS, vol. 10028,
2016, pp. 152–168.

[7] ——, “ProbReach: Verified probabilistic δ-reachability for stochastic
hybrid systems,” in HSCC. ACM, 2015, pp. 134–139.

[8] L. Bortolussi, D. Milios, and G. Sanguinetti, “Smoothed model checking
for uncertain continuous-time Markov chains,” Inf. Comput., vol. 247,
pp. 235–253, 2016.

[9] H. Abdel-Aziz and X. Koutsoukos, “Online model learning of buildings
using stochastic hybrid systems based on Gaussian processes,” Journal
of Control Science and Engineering, 2017, Article ID 3035892.

[10] L. Bortolussi and G. Sanguinetti, “A statistical approach for computing
reachability of non-linear and stochastic dynamical systems,” in QEST,
G. Norman and W. Sanders, Eds. Springer, 2014, pp. 41–56.

[11] E. Bartocci, L. Bortolussi, L. Nenzi, and G. Sanguinetti, “System design
of stochastic models using robustness of temporal properties,” Theor.
Comput. Sci., vol. 587, pp. 3–25, 2015.

[12] M. Opper and O. Winther, “Gaussian processes for classification: Mean-
field algorithms,” Neural Computation, vol. 12, no. 11, pp. 2655–2684,
2000.

[13] T. P. Minka, “Expectation propagation for approximate Bayesian infer-
ence,” in UAI, 2001, pp. 362–369.

[14] F. Rodrigues, F. C. Pereira, and B. Ribeiro, “Gaussian process classi-
fication and active learning with multiple annotators,” in ICML, 2014,
pp. 433–441.

[15] B. Xue, Y. Liu, L. Ma, X. Zhang, M. Sun, and X. Xie, “Safe inputs
generation for black-box systems,” in ICECCS, 2019, to appear.

[16] B. Xue, M. Fränzle, H. Zhao, N. Zhan, and A. Easwaran, “Probably ap-
proximate safety verification of hybrid dynamical systems,” in ICFEM,
2019, to appear.

[17] S. Gao, J. Avigad, and E. M. Clarke, “Delta-decidability over the reals,”
in LICS, 2012, pp. 305–314.

[18] K.-I. Ko, Complexity Theory of Real Functions. Birkhäuser, 1991.
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APPENDIX

A. Gaussian Processes

A Gaussian Process (GP) is a collection of random vari-
ables, any finite number of which have a multidimensional
Gaussian distribution. A GP is fully described by its mean
and covariance functions. Given an unknown function f(x) :
RD → R which we wish to model via GP, the mean
function m(x) = E[f(x)] describes the expected value of the
function, while the covariance function k(x, x′) = E[(f(x) −
m(x))(f(x′) − m(x′))] represents the expected correlation
between the observations. We can then model f by f(x) ∼
GP (m(x), k(x, x′)). It is important to note that the choice of
mean and covariance functions is crucial for the determination
of the type of functions which are possible to be sampled from
our GP prior. Without loss of generality, the mean function
is chosen to be identically zero. For the covariance function,
we use the squared exponential covariance (kernel) function,
which is known to define GP samples from smooth functions.
It is defined as:

k(x,x′) = γ exp

(
−

D∑
i=1

(xi − x′i)2

λ2i

)
where the hyperparameters γ and λ control roughness and
variance of the sampled functions. Given N input points
X = (x1, . . . ,xN ) and a random function f ∼ GP (0, k),
by definition of GP we have that

(f(x1), . . . , f(xN )) ∼ N (0,K(X,X))

where K is the matrix obtained by applying the covariance
function k to each pair of points in X.

The GP posterior distribution admits a rather simple form.
After evaluating our model over a training set X, we collect a
test set X∗. X∗. set defines the points where we want to obtain
the GP prediction. It can be shown that the joint distribution
for an unknown y∗ ∈ X∗ using a known y ∈ X is:[

y
y∗

]
= N

(
0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
.

We can now compute mean and covariance of the conditional
Gaussian distribution for the posterior distribution as:

E[y∗|y,X,X∗] = KT
∗ β,

Var[y∗|y,X,X∗] = K∗∗ −KT
∗ (K + σ2

wI)−1K∗,

where K∗ = k(X,X *),K∗∗ = k(X *,X *), K = k(X,X),
β = (K + σ2

wI)−1y.
The posterior prediction can be used to perform classifi-

cation by computing the class membership probability for a
new point, given a set of training points X = (x1, ..., xN )
and class labels y = (y1, ..., yN ). GP classification exploits
the mapping of the full real line to the [0, 1] interval using the
probit regression function [23, Section 3.1]. Unfortunately, for
our purposes it is impossible to use GP classification because
we deal with Bernoulli’s instead of Gaussians. To solve this

problem we use the Expectation-Propagation (EP) algorithm
[23, Section 3.6], which can deal with Bernoulli distributions.

The hyperparameters of the covariance function can be
computed by maximising the marginal log-likelihood of the
posterior probability with respect to the hyperparameters only
[23, Section 5.4.1 and 5.5.2].

B. Expectation Propagation

EP is an approximate inference algorithm that unifies two
techniques: assumed density filtering and loopy belief prop-
agation [12], [13]. In this algorithm a target density f(θ) is
approximated by a density from some specified parametric
family q(θ). It assumes that our target density f(θ) has a
proper factorization with the proportion f(θ) ∝

∏h
i=0 fi(θ).

The target f is the posterior density p(θ|y) in the case of
Bayesian interference. Hence, we can assign one factor as
the prior and other factors as the likelihood for one data
point. EP iteratively approximates f(θ) with a density q(θ)
which takes the same factorization q(θ) ∝

∏h
i=0 qi(θ). The

approximation which associates the factors fi(θ) with the
approximation qi(θ) is usually called sites approximation. At
each iteration of the algorithm, and for i = 1, ..., h, we take the
current approximating function q(θ) and replace qi(θ) by the
corresponding factor fi(θ) from our target distribution. Now
we can define the cavity distribution as: q−i(θ) ∝ q(θ)

qi(θ)
, with

the tilted distribution equals to q\i(θ) ∝ fi(θ)q−i(θ).
In general EP firstly constructs an approximation qnew(θ)

for the tilted distribution q\i(θ) and then updates approxima-
tion to the target density’s fi(θ), which can be computed as
qnewi (θ) ∝ qnew(θ)/q−i(θ). From the definition qnewi (θ) can
be estimated via the Kullback–Leibler divergence [23]:

qnewi (θ) = arg min D(fi(θ)q−i(θ)||qi(θ)q−i(θ)),

where D(||) corresponds to the Kullback–Leibler divergence
measure. It is important to note that other minimization
methods can be also rather efficiently used for this purpose
[13]. At a very simple level the EP algorithm works as follows:

1) Initialization of the initial site approximation qi(θ).
2) Repeat for i = 1, ..., h until all site approximations qi(θ)

convergence:
• Compute cavity parameters approximation q−i(θ) ∝
q(θ)/qi(θ) ;

• Update site parameters approximation qi(θ) and
re-compute the posterior parameters so that
qi(θ)q−i(θ) approximates as fi(θ)q−i(θ).

3) Return natural site parameters.
More details on the EP algorithm can be found in [23,

Section 3.6] and [8].


