
On Counterfactual Computation

Paolo Zuliani
Department of Computer Science

Princeton University
Princeton, NJ 08544, USA
pzuliani@cs.princeton.edu

Abstract

In this paper we pursue two targets. First, showing that counterfactual computa-
tion can be rigorously formalised as a quantum computation. Second, presenting a new
counterfactual protocol which improve previous protocols. Counterfactual computation
makes use of quantum mechanics’ peculiarities to infer the outcome of a quantum com-
putation without running that computation. In this paper, we first cast the definition of
counterfactual protocol in the quantum programming language qGCL, thereby show-
ing that counterfactual computation is an example of quantum computation. Next,
we formalise in qGCL a probabilistic extension of counterfactual protocol for decision
problems (whose result is either 0 or 1). If prG denotes for protocol G the probability
of obtaining result r “for free” (i.e. without running the quantum computer), then we
show that for any probabilistic protocol p0G + p1G ≤ 1 (as for non-probabilistic pro-
tocols). Finally, we present a probabilistic protocol K which satisfies p0K + p1K = 1,
thus being optimal. Furthermore, the result is attained with a single insertion of the
quantum computer, while it has been shown that a non-probabilistic protocol would
obtain the result only in the limit (i.e. with an infinite number of insertions).

1 Introduction

Counterfactuality is the fact that the sole possibility for an event to occur allows one to
gain some information about that event, even though it did not actually occur. Counterfac-
tual computation [4, 5] uses peculiar features of quantum mechanics to infer counterfactual
statements about the result of a computation. In particular, it is possible to devise methods
for probabilistically inferring the outcome of a computation without actually running the
computation: the mere fact that the quantum computer implementing that computation
might have run is sufficient.

One of the first examples of counterfactuality was given by Elitzur and Vaidman [1] with
the so-called interaction-free measurements. That technique allows determining the presence
of an object by means of a test particle, possibly with no “interaction” occurring between
the object and the test particle. A potential application of this technique is the acquisition
of the image of an object without any light or other radiation interacting with the object
(see [8] for example). If one replaces the object with a quantum computer implementing
some computation C and the test particle with the computer’s “switch”, it is then possible
to know the outcome of computation C without the computer ever being turned on. This
application of quantum mechanics is known as counterfactual computation and it was firstly
introduced by Jozsa [4] and then further formalised by Mitchison and Jozsa [5].

The aim of this paper is twofold:

1

• to show how a programming language, qGCL [7], can be used for rigorously describing
and reasoning about counterfactual computation, thereby embedding it in a more
general framework, which in particular includes classical, probabilistic and quantum
computation;

• to present a new example of counterfactual computation, along with its proof of cor-
rectness in qGCL. In particular, we consider a probabilistic extension of counterfactual
computation.

We assume the reader has some knowledge of the basics of quantum computing.

2 Quantum programming

We give here a short presentation of the features of qGCL (a full introduction can be found
in [7]). qGCL has been used to describe and reason about all known quantum algorithms
and to derive the Deutsch-Jozsa algorithm from its specification. The problem of compiling
qGCL code has been studied in [9].

2.1 Quantum types

We define the type B =̂ {0, 1}, which we will treat as booleans or bits, depending on
convenience. A classical register of size n:N is a vector of n booleans. The type of all registers
of size n is then defined to be the set of boolean-valued functions on {0, 1, . . . , n− 1}:

B
n =̂ {0, 1, . . . , n− 1} −→ B .

The quantum analogue of Bn is the set of complex-valued functions on Bn whose squared
modulus sum to 1:

q(Bn) =̂ {χ:Bn −→ C |
∑
x:Bn

|χ(x)|2 = 1} .

An element of q(B) is called a qubit and that of q(Bn) a qureg. Classical state is embedded
in its quantum analogue by the Dirac delta function:

δ:Bn −→ q(Bn)
δx(y) =̂ (y = x) .

The range of δ, {δx | x:Bn}, forms a basis for quantum states, that is:

∀χ:q(Bn) • χ =
∑
x:Bn

χ(x)δx .

The Hilbert space Bn −→ C (with the structure making it isomorphic to C2n) is called the
enveloping space of q(Bn). The usual scalar product becomes the application 〈·, ·〉:q(Bn)×
q(Bn)→ C defined by:

〈ψ, φ〉 =̂
∑
x:Bn

ψ(x)
∗
φ(x)

where z∗ is the complex conjugate of z:C. The length of ψ is defined ‖ψ‖ =̂ 〈ψ,ψ〉 12 .

2

2.2 Quantum language qGCL

qGCL is an extension of pGCL [6], which in turn extends Dijkstra’s guarded-command
language with a probabilistic choice constructor in order to address probabilism. The BNF
syntax for qGCL is as follows:

〈qprogram〉 ::= 〈qstatement〉{ # 〈qstatement〉}
〈qstatement〉 ::=χ := 〈unitary op〉(χ) |

Fin(〈identifier〉, 〈identifier〉, 〈identifier〉) |
In(〈identifier〉) |
skip |x := e | 〈loop〉 | 〈conditional〉 |
〈nondeterministic choice〉 |
〈probabilistic choice〉 | 〈local block〉

χ ::= 〈identifier〉
〈loop〉 ::= while 〈cond〉 do 〈qstatement〉 od

〈cond〉 ::= 〈boolean expression〉
〈conditional〉 ::= 〈qstatement〉C 〈cond〉B 〈qstatement〉

executes the LHS if predicate 〈cond〉 holds

〈nondeterministic choice〉 ::= 〈qstatement〉 � 〈qstatement〉
〈probabilistic choice〉 ::= 〈qstatement〉 p⊕ 〈qstatement〉

executes the (LHS,RHS) with probability (p, 1− p)
〈local block〉 ::= var • 〈qstatement〉 rav

where for brevity we omit the formal definitions of 〈identifier〉 and 〈boolean expression〉;
〈unitary op〉(χ) is just some mathematical expression involving qureg χ - such expression
should of course denote a unitary operator.

Probabilistic choice may be written using a prefix notation, in case the branches are
more than two. Let [(pj , rj) | 0 6 j < m] be a finite indexed family of (program, number)
pairs with

∑
j rj = 1, then the probabilistic choice in which pj is chosen with probability rj

is written in prefix form: ⊕[pj @ rj | 0 6 j < m].
Initialisation is a procedure which simply assigns to its qureg state the uniform square-

convex combination of all standard states

∀χ:q(Bn) • In(χ) =̂

(
χ :=

1√
2n

∑
x:Bn

δx

)
.

Quantum-mechanical systems evolve over time under the action of unitary transforma-
tions. Evolution thus consists of iteration of unitary transformations on quantum state.
Evolution of qureg χ under unitary operator U is described via the assignment χ := U(χ).
The well-known no-cloning theorem forbids any assignment χ := U(ψ) if (syntactically)
χ 6= ψ.

The content of a qureg can be read (measured) through quantum procedure Finalisation
and suitable observables. An observable is defined from a family of pairwise orthogonal
subspaces which together span the enveloping space of the qureg being read. Let O be an
observable defined by the family of pairwise orthogonal subspaces {Sj | 0 6 j < m}. In our
notation we write Fin(O, i, χ) for the measurement of O on a quantum system described
by state χ:q(Bn), where i stores the result determining the subspace to which state χ is
reduced. Finalisation is entirely defined using the probabilistic combinator of pGCL (see [7]

3

for an unabridged treatment); in our notation we write:

Fin (O, i, χ) =̂ ⊕
[(

i, χ := j,
PSj (χ)

‖PSj
(χ)‖

)
@ 〈χ, PSj

(χ)〉 | 0 6 j < m

]
where PSj

is the projector onto subspace Sj . We denote by ∆ the observable spanned by
the computational basis, also known as diagonal measurement.

Semantics for pGCL (and in turn for qGCL) can be given either relationally [3] or in terms
of expectation transformers [6]. We shall use the latter, due to its simplicity in calculations.
Expectation-transformer semantics is a probabilistic extension of the predicate-transformer
one. In predicate-transformer semantics a transformer maps post-conditions to their weak-
est pre-conditions. Analogously, an expectation transformer represents a computation by
mapping post-expectations to their greatest pre-expectations. We shall retain the wp pre-
fix notation of predicate-transformer calculus for convenience and we denote the greatest
pre-expectation of post-expectation q on program P by wp.P.q. For a standard predicate p
we denote by [p] its embedding into expectation transformers: the greatest pre-expectation
wp.P.[p] is then the maximum guaranteed probability that p holds after the execution of P .

In the Appendix we briefly review expectation-transformer semantics and some associ-
ated programming laws used in this paper.

3 Counterfactual computation

3.1 An example

We begin by giving the simple example of counterfactual computation introduced by Jozsa
[4]. Suppose we are given a decision problem (i.e. a problem with a binary solution, “yes”
or “no”) and a quantum computer Q with an “on-off” switch programmed to solve that
problem when the switch is set to “on”. Therefore we need a qubit to represent the switch
and another qubit for the result of the computation. The computer might need an extra
qureg to use during its functioning, but we assume that Q works reversibly, so that at the
end of the computation the output will be placed in the output register as bit-wise XOR.
We map “off/on” and “no/yes” to δ0/δ1, so for example δ00 means switch at “off” and result
“no”. The functioning of the computer is thus:

Q(δij) =̂ δi(j⊕r)

where⊕ is bit-wise XOR and r is the result of the problem. We suppose that the computation
takes at most a finite time T .

From Table 1 we see that for r = 0 the computer behaves as the identity transform,
i.e. “do nothing”, while for r = 1 it behaves as the well known CNOT transform over the
switch and output qubits. By assuming that switch and output are encoded by qureg χ, we
can readily model Q by program QC:

QC(χ) =̂ (QC0(χ) � QC1(χ))

QC0(χ) =̂ skip , QC1(χ) =̂ χ := CNOT (χ)

thus representing our ignorance about the inner working of the computer and the result of
the decision problem. The goal is to start with the switch “off” and, after at least a time
T , to determine which operation skip or CNOT has been performed, without setting the
switch to “on”.

Consider the following program N :

N =̂ [χ := δ00 # χ := H ⊗ 1(χ) #QC(χ) # χ := H ⊗ 1(χ)]

4

r = 0 r = 1
δ00 → δ00 δ00 → δ00 switch “off”
δ01 → δ01 δ01 → δ01 switch “off”
δ10 → δ10 δ10 → δ11 switch “on”
δ11 → δ11 δ11 → δ10 switch “on”

Table 1: Functioning of the quantum computer Q

where χ:q(B2), 1 is the identity transform over qubits, and H is the single-qubit Hadamard
transform defined as:

H:q(B)→ q(B)

H(δx) =̂
1√
2

(δ0 + (−1)xδ1) .

We show that if the result of the problem is 1, then N can probabilistically infer it with
probability 1

4 , without running the computer. We reason on program N :

N

= law A-2, definition of H

χ := 1√
2
(δ00 + δ10) #QC(χ) # χ := H ⊗ 1(χ)

= definition of QC and law A-3

[χ := CNOT(1√
2
(δ00 + δ10))]� [χ := 1√

2
(δ00 + δ10) # skip] # χ := H ⊗ 1(χ)

= definition of CNOT and skip identity

[χ := 1√
2
(δ00 + δ11)]� [χ := 1√

2
(δ00 + δ10)] # χ := H ⊗ 1(χ)

= laws S-3, A-3

[χ := H ⊗ 1(1√
2
(δ00 + δ11))]� [χ := H ⊗ 1(1√

2
(δ00 + δ10))]

= definition of H

[χ := 1
2 (δ00 + δ01 + δ10 − δ11)]� [χ := δ00]

Suppose we now measure χ in the standard basis: if r = 0 (i.e. RHS of the nondeterministic
choice) we always measure 00 and, because with probability 1

4 we may measure 00 when
r = 1, we cannot reliably infer the result of the computation. Suppose now r = 1: with
probability 1

4 we measure 10 and we know for sure that 1 is the result of the problem.
Furthermore, the computer has not run, because if it had the output register (initially set
to 0) should display 1. Therefore, if r = 1, with probability 1

4 we learn the result of the
problem without running the computer! The output 10 is thus a counterfactual outcome.
Finally, with probability 1

4 each we measure 01 and 11, thereby learning that r = 1, but the
computer has run (the output register has changed).

3.2 Formal definition

We now code in qGCL the definition of protocol given by Mitchison and Jozsa [5]. For a
datatype D we denote by seq(D) the datatype of finite sequences of elements of type D.

Definition 3.1. A protocol G is a terminating program of the following type:

G =̂ var χ:q(Bn), o:seq(Bn), ψ:q(Bp), s:Bp • body # Fin(∆, s, ψ) rav

5

where:

• body, according to Mitchison and Jozsa [5], is “a sequence of steps where each step is
one of the following:

(a) A unitary operation (not involving the computer) on a finite number of specified
qubits.

(b) A measurement on a finite number of specified qubits.

(c) An ‘insertion of the computer’ QC, where the state of two selected qubits is
swapped into the switch and output registers of the computer.”

• o returns the list of outcomes of the measurements of steps of type (b).

In order to formally describe what we mean by saying that the computer has not run,
we procede as follows. After each insertion of QC we project the state over two orthogonal
subspaces, the “off” and “on” subspaces, by entangling it with a qubit from ψ. That
transformation is defined as:

E:q(Bn)→ q(Bn+1)

E(v) =̂ (Pδ0 ⊗ 1)v ⊗ δ0 + (Pδ1 ⊗ 1)v ⊗ δ1.

We note that we need as many qubits as the number of insertions of the computer. The
action of E is thus to create two coherent superpositions of the state vector, one ‘living’ in
the off subspace, the other living in the on subspace. By measuring ψ at the end of the
computation we can recognise a computation which has always taken place in the (desirable)
off subspace: in that case ψ would reduce to δ0p (equivalently, s is the p-bit string 0, an
“all-off” string). Our method is equivalent to the graphical history approach of Mitchison
and Jozsa [5]: o and s collectively denote a history. The advantage of our approach is that
it embeds all the necessary concepts in a single, general-purpose programming formalism.

We are now ready to formalise the definition of counterfactual computation in qGCL.

Definition 3.2. Given a protocol G, a sequence m:seq(Bn) is a counterfactual outcome of
type r:B if the following two conditions hold:

(1) ∀c:Bm • wp.Gr.[o = m, s = c] = 0 iff c 6= 0

(2) wp.G1−r.[
∑
χi:M

χi = 0] = 1

where M is the set of state vectors for which o = m, and Gr denotes protocol G when
QC = QCr, i.e. only operation QCr is performed by the computer.

Condition (1) states that if QCr is used in the protocol, then m is seen iff the (only)
computation leading to it has always stayed in the off subspace. Therefore we can infer the
result (r) of the problem for “free”, since the switch of the quantum computer was always
found at off. Condition (2) states that when QC1−r is used, then all the computations
leading to m annihilate themselves, by means of the so-called destructive interference. That
implies wp.G1−r.[o = m] = 0, i.e. m never occurs (the converse needs not to hold) and we
are sure that the result of the problem is r.

3.3 Limits on counterfactual computation

In this section we show how qGCL can be effective in reasoning about counterfactual com-
putation. We begin by noting that a sequence of measurement outcomes cannot be a coun-
terfactual outcome of type 0 and 1 at the same time. That is, if we define CFG(t) as the
set of counterfactual outcomes of type t for protocol G, then the sets CFG(0) and CFG(1)
are disjoint.

6

Theorem 3.1. For any protocol G we have that CFG(0) ∩ CFG(1) = ∅.

Proof. A contradiction arises between condition (2) for m:CFG(0) and condition (1) for
m:CFG(1).

Let p0G and p1G denote the probability of learning “for free” outcomes 0 and 1 respectively,
in a protocol G; in our notation we write:

∀r:B • prG =̂
∑

m:seq(Bn)

wp.Gr.[o = m, s = 0].

The sum is well defined as G always terminates. One may wish to design a protocol for
which both p0G and p1G are greater than 0 and perhaps p0G + p1G > 1. Mitchison and Jozsa
[5] stopped further conjectures, showing that for any protocol the two probabilities sum to
at most 1. We replay here their result in our formalism.

Theorem 3.2 (Mitchison and Jozsa). For any protocol G we have:

p0G + p1G 6 1 .

Proof. We reason:

p0G + p1G

= definition of prG∑
t:B

∑
m:seq(Bn) wp.Gr.[o = m, s = 0]

= logic and definition of CFG(·)∑
m:CFG(0) wp.G0.[o = m, s = 0] +

∑
l:CFG(1) wp.G1.[o = l, s = 0]

= in the off subspace wp.G0 = wp.G1∑
m:CFG(0) wp.G0.[o = m, s = 0] +

∑
l:CFG(1) wp.G0.[o = l, s = 0]

= Theorem 3.1∑
m:CFG(0) wp.G0.[o = m, s = 0]

6 logic∑
m:seq(Bn) wp.G0.[o = m, s = 0]

= wp-semantics and 1 top element

wp.G0.[s = 0] 6 1

Mitchison and Jozsa also derived complexity constraints between prG and the number of
times the computer is inserted. They showed that for any protocol G such that p0G + p1G =
1− ε, the number of insertions of the computer must necessarily tend to infinity as ε tends
to 0.

4 Probabilistic extension

In this section we formalise in qGCL a probabilistic extension of counterfactual computation
proposed by Mitchison and Jozsa [5]. In particular, we consider the case in which we allow
a relaxation of condition (1) of definition 3.2, while (2) is carried over intact.

7

Definition 4.1. Given a protocol G, a sequence m:seq(Bn) is an approximate counterfactual
outcome of type r:B if the following two conditions hold:

(1′) wp.Gr.[o = m, s 6= 0] < ε

(2′) wp.G1−r.[
∑
χi:M

χi = 0] = 1

where ε is a small real in the (0, 1] interval.

Condition (1′) implies that, when using QCr in the protocol, m may arise from a com-
putation which does not lie in the off subspace, i.e. the computer has run throughtout the
protocol. However, the probability of such an event is bounded by the small number ε. It
is of course expected that the computation of the off subspace leading to m has probability
greater than ε. Together, the two conditions ensure that when we see m the answer to the
decision problem is r (because of (2′)), and with high probability the computer has not run.

Probabilistic protocols (i.e. protocols which feature approximate counterfactual out-
comes) face some of the limitations of non-probabilistic ones.

Theorem 4.1. For any probabilistic protocol G we must have p0G + p1G ≤ 1.

Proof. The proof of Theorem 3.2 still applies, as condition (2′) is what ensures that an
outcome can be only be measured under either Gr or G1−r.

However, probabilistic protocols do not require an infinite number of insertions of the
computer in order to reach the limit 1. The next example shows that a single insertion
suffices.

4.1 Probabilistic protocol

We describe a probabilistic protocol which can infer the answer to the decision problem with
certainty, but requires a run of the quantum computer with probability 1

2 . We first draft
the functioning of the protocol in words, then we code it in qGCL, and we finally prove its
correctness. Again, for simplicity we write the state of the switch and of the output qubits
as a single qureg.

We start with the switch and output register in the equally-weighted superposition of
standard states, that is χ = 1

2

∑
i:B2 δi. Then we perform phase inversion on state δ11, thus

giving χ = 1
2 (δ00 + δ01 + δ10 − δ11). We apply the quantum computer:

χ =

{
v0 =̂ 1

2 (δ00 + δ01 + δ10 − δ11) if r = 0

v1 =̂ 1
2 (δ00 + δ01 + δ11 − δ10) if r = 1

We now measure χ using observable {Cv0,Cv1, (Cv0 ⊕Cv1)⊥} where Cvi is the unidimen-
sional spaces spanned by vi and ⊥ denotes orthogonality. Since v0 ⊥ v1, we are thus able
to learn r with certainty and we do not perturb state χ. A subsequent measurement of the
switch qubit reduces χ to its off subspace (i.e. switch set to 0) with probability 1

2 .
In qGCL the protocol is coded as follows:

K =̂ var χ:q(B2), ψ:q(B), o:{0, 1, 2}, s:B •
In(χ)#
χ := Tδ11(χ)#
QC(χ)#
χ, ψ := E(χ)#
Fin(V, o, χ⊗ ψ)#
Fin(S, s, χ⊗ ψ)

rav

8

where:

• for function f :Bn → B between registers, unitary transformation Tf between quregs
inverts χ (pointwise) about 0 if f holds and otherwise leaves it unchanged

Tf :q(Bn)→ q(Bn)

(Tfχ)(x) =̂ (−1)f(x)χ(x)

• observable V =̂ {V0, V1, V2} has Vi =̂ CE(vi) for i:B, and V2 =̂ (V0 ⊕ V1)⊥

• observable S =̂ {S0, S1} has Si =̂ C2 ⊗Cδi
Proposition 4.2. Outcome m:B is an approximate counterfactual outcome of type m for
protocol K. In particular, we have:

(a) wp.Km.[o = m, s 6= 0] = 1
2

(b) wp.K1−m.[
∑
χi:M

χi = 0] = 1

Proof. We reason directly on K:

K

= definition of In

χ := 1
2 (δ00 + δ01 + δ10 + δ11)#

χ := Tδ11(χ)#
QC(χ)#
χ, ψ := E(χ)#
Fin(V, o, χ⊗ ψ)#
Fin(S, s, χ⊗ ψ)

= definition of Tf and law A-2

χ := v0#
QC(χ)#
χ, ψ := E(χ)#
Fin(V, o, χ⊗ ψ)#
Fin(S, s, χ⊗ ψ)

= definition of QC and laws A-3, S-3(
χ := v0#
χ := CNOT(χ) # χ, ψ := E(χ)

)
�

(
χ := v0#
skip # χ, ψ := E(χ)

)
#

Fin(V, o, χ⊗ ψ)#
Fin(S, s, χ⊗ ψ)

= law A-2, definition of CNOT and skip identity

(χ, ψ := E(v1))� (χ, ψ := E(v0))#
Fin(V, o, χ⊗ ψ)#
Fin(S, s, χ⊗ ψ)

= law S-2(
χ, ψ := E(v1)#
Fin(V, o, χ⊗ ψ)#

)
�

(
χ, ψ := E(v0)#
Fin(V, o, χ⊗ ψ)#

)
#

Fin(S, s, χ⊗ ψ)

9

= definition of Fin

⊕

 χ, ψ := E(v1)#

o, χ, ψ := j,
PVj

(χ⊗ψ)
‖PVj

(χ⊗ψ)‖

@〈χ⊗ ψ, PVj
(χ⊗ ψ)〉 | j:{0, 1, 2}

�
⊕

[(
χ, ψ := E(v0)#

o, χ, ψ := k,
PVk

(χ⊗ψ)
‖PVk

(χ⊗ψ)‖

)
@〈χ⊗ ψ, PVk

(χ⊗ ψ)〉 | k:{0, 1, 2}

]
#

Fin(S, s, χ⊗ ψ)

= law A-2 and linear algebra

(o, χ, ψ := 1, E(v1))� (o, χ, ψ := 0, E(v0))#
Fin(S, s, χ⊗ ψ)

= law S-2 and definition of Fin and E

⊕

 o, χ, ψ := 1, 12 (δ000 + δ010 + δ111 − δ101)#

s, χ, ψ := j,
PSj

(χ⊗ψ)
‖PSj

(χ⊗ψ)‖

@〈χ⊗ ψ, PSj
(χ⊗ ψ)〉 | j:B

�
⊕

[(
o, χ, ψ := 0, 12 (δ000 + δ010 + δ101 − δ111)#

s, χ, ψ := k,
PSk

(χ⊗ψ)
‖PSk

(χ⊗ψ)‖

)
@〈χ⊗ ψ, PSk

(χ⊗ ψ)〉 | k:B

]
= law A-2 and linear algebra

[(o, s, χ, ψ := 1, 0, 1√
2
(δ000 + δ010)) 1

2
⊕ (o, s, χ, ψ := 1, 1, 1√

2
(δ111 − δ101))] �

[(o, s, χ, ψ := 0, 0, 1√
2
(δ000 + δ010)) 1

2
⊕ (o, s, χ, ψ := 0, 1, 1√

2
(δ101 − δ111))]

By inspection we can easily see that claims (a) and (b) are fully satisfied (K1 is the LHS of
the nondeterministic choice, while K0 is the RHS).

We observe that protocol K thus exhibits two counterfactual outcomes: 0 and 1. Mitchi-
son and Jozsa also exhibited a protocol with two counterfactual outcomes which fully satisfies
definition 3.2, and for which p0 = p1 = 0.172, thereby giving p0 + p1 = 0.344. However,
the main advantage of protocol K is that it reaches the probability bound 1 with a single
insertion of the computer, while a standard protocol reaches 1 only in the limit.

Proposition 4.3. Protocol K is optimal, that is p0K + p1K = 1.

Proof. It follows by Proposition 4.2 and Theorem 4.1.

We note that K is also optimal with respect to the number of insertions of the computer,
since at least one insertion is required by any protocol. In Table 2 we provide a summary
of the features of standard and probabilistic counterfactual computation.

We conclude by providing another example of probabilistic protocol, which stems from
protocol K. Of course it cannot improve protocol K, but it provides another example of
protocol (and of quantum computation, in the end). We first recall the “inversion about the
mean” transform introduced firstly by Grover in his search algorithm [2]. It is the unitary
transform M(·) defined as:

M :q(Bn)→ q(Bn)

(Mχ)(x) =̂ 2
(

1
2n

∑
y:Bn χ(y)

)
− χ(x).

Together with transform Tf , they form Grover’s algorithm core iteration.
Our new protocol works like protocolK, except that before the last (diagonal) finalisation

we first unitarily transform the switch and the output register in such a way “to drive” the

10

G standard protocol G probabilistic protocol

p0G + p1G ≤ 1 (Mitchison and Jozsa [5]) ≤ 1 (Theorem 4.1; protocol
K attains exactly 1)

Number N of insertions N →∞ when p0G + p1G → 1 N can be as low as 1
of the computer (Mitchison and Jozsa [5]) (our protocol K)

Table 2: Standard vs. probabilistic protocols

switch to the off state. In qGCL it is coded as follows, where for simplicity we did not
include the qubit ψ for distingushing between the off and on subspaces:

O =̂ var χ:q(B2), o, s:B2 •
In(χ)#
χ := Tδ11(χ)#
QC(χ)#
Fin(W, o, χ)#
(χ := Tδ10(χ))C oB (χ := Tδ11(χ))#
χ := Tδ00(χ)#
χ := M(χ)#
Fin(∆, s, χ)

rav

where W is the observable {Cv0,Cv1, (Cv0 ⊕ Cv1)⊥}. We argue that outcome m:B is an
approximate counterfactual outcome of type m, and that p0O = p1O = 1

2 . We give here an
informal proof of our claim.

We know from the functioning of K that, assuming QCr has been executed, the state
after the measurement of W is:

χ =
1

2
(δ00 + δ01 + δ1r − δ1¬r).

The following conditional thus transforms the state to:

χ =
1

2
(δ00 + δ01 + δ10 + δ11).

The next instruction flips the sign of the amplitude for basis state δ00:

χ =
1

2
(−δ00 + δ01 + δ10 + δ11).

The execution of M on χ gives χ = δ00. This means that we always end up in the initial
“off” state δ00. Furthermore, we recorded the outcome of the measurement of W, which
identifies with certainty the result of the decision problem. We note that although O always
ends in δ00, there are computations which return the outcome m, but do not belong to the
off subspace. Those computations have been annihilated by the functioning of the algorithm
(by embedding state χ via transformation E one can easily calculate them). Therefore, we
cannot claim that the result is always for free, and that motivates condition (1) of definition
3.1 requiring that only the computation in the off subspace must have non-zero probability.

11

5 Conclusions

Counterfactual computation allows a seemingly paradoxical effect: to infer the result of
a computation without running it. This remarkable fact can be achieved by means of
peculiar properties of quantum mechanics. In this paper we showed how it is possible to
formalise counterfactual computation in a framework provided by the quantum programming
language qGCL, thereby showing that counterfactual computation is just an example of
quantum computation. The main benefit of this approach is the possibility of exploiting
the well-established body of programming laws which comes with qGCL. Next, we proposed
a probabilistic extension of the original definition of counterfactual computation and we
casted it into qGCL. We showed that probabilistic counterfactual protocols share some of
the limitations of non-probabilistic protocols. In particular, for any probabilistic protocol G
we must have p0G+p1G ≤ 1. We presented a probabilistic protocol K for which p0K +p1K = 1,
thus being optimal. Furthermore, our protocol K requires a single insertion of the quantum
computer, while any non-probabilistic protocol would reach the upper bound 1 only with
an infinite number of insertions. Therefore, the probabilistic relaxation of counterfactual
computation helps only with respect to the complexity of the protocol.

6 Acknowledgements

This work was mainly carried out while visiting the Oxford University Computing Labora-
tory, with the support of Consiglio Nazionale delle Ricerche (Italy). The author is currently
supported by a Marie Curie Outgoing International Fellowship within the 6th Framework
Programme of the European Commission. The author would like to thank Jeff Sanders for
his support.

References

[1] Avshalom C. Elitzur and Lev Vaidman. Quantum mechanical interaction-free measure-
ments. Foundations of Physics, 32(7):987–997, 1993.

[2] L. K. Grover. A fast quantum mechanical algorithm for database search. In STOC ’96:
Proceedings of the 28th Annual Symposium on the Theory of Computing, pages 212–219,
1996.

[3] J. He, A. McIver, and K. Seidel. Probabilistic models for the guarded command language.
Science of Computer Programming, 28:171–192, 1997.

[4] Richard Jozsa. Quantum effects in algorithms. QCQC ’98 Springer LNCS, 1509:103–112,
1999.

[5] G. Mitchison and R. Jozsa. Counterfactual computation. Proceedings of the Royal Society
of London A, 457:1175–1193, 2001.

[6] C. C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM
Transactions on Programming Languages and Systems, 18(3):325–353, May 1996.

[7] J. W. Sanders and P. Zuliani. Quantum programming. In MPC ’00: Mathematics of
Program Construction, Springer LNCS, volume 1837, pages 80–99, 2000.

[8] G.A. White, F.R. Mitchell, O. Nairz, and P. Kwiat. Interaction-free imaging. Physical
Review A, 58:605–613, 1998.

[9] P. Zuliani. Compiling quantum programs. Acta Informatica, 41(7-8):435–474, 2005.

12

A pGCL semantics

In this section we briefly review expectation-transformer semantics for pGCL [6], qGCL’s
parent language. Furthermore, we list some associated programming laws used in this work.

Definition. The state x of a program P is the array of global variables used during the
computation. That is

x =̂ (v1, . . . , vn) : T1 × T2 × . . .× Tn.

The Cartesian product T1× T2× . . .× Tn of all the data types used is called the state space
of program P .

An expectation is a [0, 1]-valued function on a state space X and may be thought of as a
“probabilistic predicate”. The set Q of all expectations is defined:

Q =̂ X → [0, 1].

Expectations can be ordered using the standard pointwise functional ordering for which
we shall use the symbol V, and p V q means “p everywhere no more than q”. Standard
predicates are easily embedded in Q by identifying true with expectation 1 and false with
0. For a standard predicate p we shall write [p] for its embedding.

The pair (Q,V) forms a complete lattice, with greatest element the constant expectation
1 and least element the constant expectation 0. For i, j:Q we shall write i ≡ j iff iV j and
j V i (or iW j). The set J of all expectation transformers is defined:

J =̂ Q → Q.

Not every expectation transformer corresponds to a computation: only the sublinear ones
do [6].

The following table gives the expectation-transformer semantics for some pGCL com-
mands (we shall retain the wp prefix of predicate-transformer calculus for convenience):

wp.abort.q =̂ 0

wp.skip.q =̂ q

wp.(x := E).q =̂ q[x\E]

wp.(R # S).q =̂ wp.R.(wp.S.q)

wp.(R / cond . S).q =̂ [cond] ∗ (wp.R.q) + [¬cond] ∗ (wp.S.q)

wp.(R � S).q =̂ (wp.R.q) u (wp.S.q)

wp.(R p⊕ S).q =̂ p ∗ (wp.R.q) + (1− p) ∗ (wp.S.q)

where q:Q, x:X, p:[0, 1] and cond is an arbitrary predicate over state space; q[x\E] denotes
the expectation obtained after replacing all free occurrences of x in q by expression E; u
denotes the greatest lower bound. Recursion is treated in general using the existence of fixed
points in J .

We now list a few algebraic programming laws which we used in the paper; the semantic
models adopted and proofs can be found in [3, 6]. In the following laws we use the term e
to indicate an expression whose type is determined by the context.

13

Law (Id “skip identity”). (P # skip) = (skip # P) = P

Law (P-1). P 1⊕ Q = P

Law (P-2). P r⊕ Q = Q 1−r⊕ P

Law (S-2). (P r⊕ Q) #R = (P #R) r⊕ (Q #R)

Law (S-3). (P �Q) #R = (P #R)� (Q #R)

Law (A-1). (x := e) # (P r⊕ Q) = (x := e # P) r[x\e]⊕ (x := e #Q)

Law (A-2). (x := e # x := f) = (x := f [e\x])

Law (A-3). (x := e # P �Q) = (x := e # P)� (x := e #Q)

Since standard conditional is a particular case of probabilistic choice, laws S-2 and A-1
hold for that, too.

14

