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Abstract. In this paper a programming language, qGCL, is presented
for the expression of quantum algorithms. It contains the features re-
quired to program a ‘universal’ quantum computer (including initiali-
sation and observation), has a formal semantics and body of laws, and
provides a refinement calculus supporting the verification and deriva-
tion of programs against their specifications. A representative selection
of quantum algorithms are expressed in the language and one of them is
derived from its specification.

1 Introduction

The purpose of this paper is to present a programming language, qGCL, for
quantum computation.

Quantum algorithms are usually described in pseudo code. For semantic sup-
port there are two models of quantum computation: quantum networks [8, 2] and
quantum Turing machines [7]. The former provides a data-flow view and so is
relevant when considering implementation in terms of gates; whilst it expresses
modularisation well, it fails to express (demonic) nondeterminism or probability
(both features of quantum computation). The latter is appropriate for com-
plexity analysis but as inappropriate for modularised description and reasoning
about correctness of quantum algorithms as standard Turing machines are for
that purpose for standard algorithms.

With qGCL we introduce an extension of the guarded-command language to
express quantum algorithms. It contains both (demonic) nondeterminism and
probability. The former arises in the specification of several quantum algorithms
(and so in their derivations) and the latter is required in order to ‘observe’ a
quantum system. qGCL has a rigorous semantics and body of laws as a result
of other work (on probabilistic semantics; see for example [23]) and so benefits
from an associated refinement calculus (exhibiting notions of program refine-
ment, data refinement, containing high-level control structures and combining
specification constructs with code). Moreover it abstracts implementation con-
cerns like the representation of assignments as unitary transformations and the
execution of those unitary transformations as gates.



After the invention of various efficient quantum algorithms there seems to
have been a period of consolidation in which frameworks have been sought to
relate those algorithms. The ‘hidden subgroup problem’ [25] has been seen as a
conceptually unifying principle whilst ‘multi-particle interference’ [6] has been
proposed as a unifying principle closer to implementation. More pragmatically,
several simulations have been proposed [1, 26, 31] at various levels of applicability.

Not surprisingly we take the formal-methods or ‘MPC’ view that a derivation
is worth a thousand simulations (or more!). Thus in an area containing subtle
algorithms formal reasoning can be expected to come into its own. One approach
would be to perform derivations of quantum program in a standard model and
‘bolt on’ reasoning to cover their probabilistic and quantum behaviour. A more
elegant alternative would be a single formalism in which all aspects of a quantum
program’s functionality are reasoned about at once. It might be thought that
such a formalism would be unwieldy. ¿From our experience with probabilistic
semantics we have found that not to be the case; it has led us to the present
proposal.

There have been at least two previous attempts to treat quantum compu-
tation from a programming-language perspective: Greg Baker’s Q-GOL [1] and
Bernhard Ömer’s Quantum Computation Language, QCL [26]. The former pro-
vides a graphical tool for building and simulating quantum circuits using the
gate formalism for quantum computation. It does not offer a concise program-
ming language and is not able to implement and simulate all known quantum
algorithms.

Ömer’s QCL is a high-level architecture-independent programming language
for quantum computers, with a syntax very like that of C and an interpreter
powerful enough to implement and simulate all known quantum algorithms. It
incorporates neither probabilism nor nondeterminism, has no notion of program
refinement (and so no refinement calculus) and no semantics; furthermore only
standard observation is allowed. QCL is appropriate for numerical simulation of
quantum algorithms, whilst qGCL’s abstraction, rigorous semantics and associ-
ated refinement calculus seem to make it more suitable for program derivation,
correctness proof and teaching.

Only experience will show whether qGCL is pitched at the right level of
abstraction. However to support that view we here express in it a representa-
tive selection of quantum algorithms and perform an exemplary, though simple,
derivation.

2 Quantum types

In this section we study, for use in quantum computation, a transformation q
that converts a classical type to its quantum analogue. With but one simple
exception, in section 6.5, quantum algorithms require application of q only to
registers and so here we restrict ourselves to that case.

Let B denote the type {0, 1} treated either as booleans or bits, as convenience
dictates. For natural number n let 0 . . n denote the interval of natural numbers



at least 0 but less than n

0 . . n =̂ {i | 0 ≤ i < n} .

A (classical) register of size n is a vector of n booleans. The type of all registers
of size n is thus defined to be the set of boolean-valued functions on 0 . . n

Bn =̂ 0 . . n B .

Naturally we are interested in n at least 1 and identify B1 with B .

The state of a classical system can be expressed using registers. ¿From quan-
tum theory we learn 1 —for example from Young’s double-slit experiment— that
the state of a quantum system is modelled using ‘phase’ information associated
with each standard state. We follow convention [13, 27] and represent phase as
a complex number of modulus at most 1. The probability of observing a state is
then the modulus squared of its phase; and all probabilities sum to 1.

That leads to the following definition.

The quantum analogue of Bn is

q(Bn) =̂ {χ : Bn C |
∑
x :Bn

|χ(x ) |2 = 1} . (1)

An element of q(B) is called a qubit [28] and that of q(Bn) a qureg.

Classical state is embedded in its quantum analogue by the Dirac delta func-
tion

δ : Bn q(Bn)

δx (y) = (y = x ) .

The range of δ, {δx | x ∈ Bn}, forms a basis for quantum states in this sense:

any qureg χ : q(Bn) is a square-convex complex superposition of stan-
dard states

χ =
∑

x :Bn χ(x )δx ,
∑

x :Bn |χ(x ) |2 = 1 .

(In physics δx is denoted by the ket |x 〉 . Our choice of notation has been deter-
mined by audience background.)

The Hilbert space Bn C (with the structure making it isomorphic to C 2n ) is
called the enveloping space of q(Bn) ; it is the Hilbert space of lowest dimension
containing q(Bn) as unit sphere. We shall see that, because the elements of the
range of δ are pairwise orthogonal in the enveloping space, they are observably
distinct with probability 1.

1 In the talk which this paper accompanies the relevant features of quantum theory
will be introduced in a tutorial manner.



3 Tensor products

In a standard programming language the state of a program having indepen-
dent component program variables can be expressed, more for theoretical than
practical convenience, as a single variable equal to the Cartesian product of the
components. The quantum analogue is that quantum state is the tensor product
of its independent state components (equation (2)). In describing algorithms we
thus have a choice between using individual variables, combining them when
required (for example by finalisation) using tensor product; and using a vec-
tor of variables but subjecting it to transformation by the tensor product of
a particular function on a particular component with the identity function on
the remaining components. To support both approaches we require the tensor
product both of registers and of functions.

The tensor product of (standard) registers is defined

⊗ : Bm×Bn Bm+n

(x ⊗ y)(i) =̂ x (i div n)× y(i mod n)

and readily shown to be surjective. That definition lifts, via δ and linearity, to
quantum registers

⊗ : q(Bm)×q(Bn) q(Bm+n) .

Well definedness (i.e. square-summability to 1) is immediate.
For sets E and F of quregs we write

E ⊗ F =̂ {χ⊗ ξ | χ ∈ E ∧ ξ ∈ F} .

Then the property of q alluded to above is the isomorphism

q(Bm×Bn) ∼= q(Bm)⊗ q(Bn) . (2)

(Since both sides are finite-dimensional vector spaces the proof is a matter of
counting dimension. The left-hand side evidently has basis

{(δx , δy) | x ∈ Bm ∧ y ∈ Bn}

whilst a basis for the right-hand side consists of the equinumerous set

{δx ⊗ δy | x ∈ Bm ∧ y ∈ Bn} .)

Next tensor product of functions on registers is defined

⊗ : (Bm Bm)× (Bn Bn) (Bm+n Bm+n)

(A⊗ B)(x ⊗ y) =̂ A(x )⊗ B(y) .

Finally ⊗ is extended by linearity to functions on quantum registers, for
which we follow tradition and use the same symbol yet again

⊗ : q(Bm Bm)× q(Bn Bn) q(Bm+n Bm+n) .



4 Probabilistic language pGCL

In the next section we introduce an imperative quantum-programming language.
But first, in this section, we recall Dijsktra’s guarded-command language [11],
GCL, extended to include probabilism [21, 23] and called pGCL.

Syntax for the guarded-command language consists of all but the last of these
constructs

var variable declaration
skip no op
abort abortion
x := e assignment
P Q sequencing
if [] bi Si fi conditional
do [] bi Si od iteration
P uQ (demonic) nondeterminism
P r⊕Q probabilism.

Semantics can be given either in terms of predicate transformers [11] or binary
relations [17]. In the former case each program is thought of as transforming a
post-condition to the weakest precondition from which termination, in a state
satisfying that postcondition, is guaranteed. In the latter case each program
is thought of as transforming initial state to final state, with a virtual state
encoding non-termination.

We require the language to be extended, as usual, to embrace procedure
invocation; see for example [20].

pGCL denotes the guarded-command language extended to contain proba-
bilism. Program P r⊕ Q equals P with probability r and Q with probability
1−r . Its semantics has been given in two forms, following the semantic styles of
GCL. The transformer semantics [22] extends pre- and post-conditions to pre-
and post-expectations: real-valued random variables; the relational semantics [16]
relates each initial state to a set of final distributions. In either case refinement
P v Q means that Q is at least as deterministic as P . The two models are
related by a Galois connection embedding the relational in the transformer [22].
There is a family of sound laws [16, 23], including those for data refinement, so
that the language pGCL is embedded in a refinement calculus. It is that feature
which we exploit.

In pGCL (demonic) nondeterminism is expressed semantically as the combi-
nation of all possible probabilistic resolutions

P uQ = u{P r⊕Q | 0 ≤ r ≤ 1} . (3)

Thus a (demonic) nondeterministic choice between two programs is refined by
any probabilistic choice between them

∀ r : [0, 1] • P uQ v P r⊕Q (introduce probabilism) .



Probabilism does not itself yield nondeterminism: if P and Q are deterministic
(maximal with respect to the refinement order) then so is P r⊕ Q . Unfortu-
nately for most authors in the area of quantum computation nondeterminism
means probabilism. One of the important (and technically difficult) features of
pGCL is its combination of (demonic) nondeterminism and probabilism; the re-
sult seems to provide just the right expressive power for the treatment of quan-
tum algorithms. Indeed of the examples to follow, those of Grover, Shor and
Deutsch-Jozsa all feature both (demonic) nondeterminism and probabilism.

If a set E of expressions contains more than one element then in the guarded-
command language the assignment x :∈ E means the nondeterministic choice
over all individual assignments of elements of E to x . In pGCL that choice is
interpreted to occur with uniform probability.

As we need them we introduce two pieces of derived syntax concerning prob-
abilism: one a prefix combinator (display (6) to follow); the other weakening
exact probability r in probabilistic choice to the interval [r , 1] (definition (9) to
follow).

5 Quantum language qGCL

A quantum program is a pGCL program invoking quantum procedures (described
below); the resulting language is called qGCL. It is important for us that qGCL,
being expressed in terms of pGCL, inherits its refinement calculus. That enables
us to combine code and specifications (and, less of a problem, to benefit from the
usual liberties in writing programs, like using as guard the predicate ‘N times’)
since the result has a semantic denotation to which refinement applies.

There are three types of quantum procedure: initialisation (or state prepa-
ration) followed by evolution and finally finalisation (or observation or state
reduction). We now explain each of those three terms.

5.1 Initialisation

Initialisation is a procedure which simply assigns to its qureg state the uniform
square-convex combination of all standard states

χ : q(Bn)

In (χ) =̂ χ := 2−n/2
∑

x :Bn δx .

There χ is a result parameter.
Initialisation so defined is feasible in the sense that it is achievable in prac-

tice [8] by initialising the qureg to the classical state δ0 (where 0 denotes the
register identically false) and then subjecting that to evolution by the (unitary)
Hadamard transform, defined as a tensor power:

Hn : q(Bn) q(Bn)

H1(χ)(x ) =̂ 2−1/2(χ(0) + (−1)xχ(1))
Hn+1 =̂ Hn ⊗H1

(4)

where exponentiation of bits is standard (−1)x = −1 � x � 1 .



5.2 Evolution

Evolution consists of iteration of unitary transformations on quantum state. (It is
thought of, after initialisation, as achieving all superposed evolutions simultane-
ously, which provides much of the reason for quantum computation’s efficiency.)
Again, evolution is feasible: it may be implemented using universal quantum
gates [3, 9].

For example on B, after initialisation, evolution by the Hadamard transfor-
mation H1 results in χ = δ0 (because H1 is not only unitary but equal to its
own conjugate transpose and so self-inverse). Thus our definition of initialisation
does not exclude setting state to equal δ0 (or any other standard state for that
matter). That fact is used in procedure Q in Shor’s algorithm (and similarly in
Simon’s algorithm, not considered here).

Later we use this important example of evolution: for function f : Bn Bn

between registers, transformation Tf between the corresponding quregs is defined
pointwise to invert χ about 0 if f holds and otherwise to leave it unchanged

Tf : q(Bn) q(Bn)

(Tf χ)(x ) =̂ (−1)f (x)χ(x ) = −χ(x ) � f (x ) � χ(x ) .
(5)

Evidently Tf is unitary.
More complicated evolutions appear in section 6.

5.3 Finalisation

Finalisation is a little more difficult to define largely because of the notation
required. We motivate it by considering first the simple qubit case (later called
‘diagonal’).

Simple observation of a qubit χ = χ(0)δ0+χ(1)δ1 reduces it, by the principles
of quantum theory, to the standard state δx with probability |χ(x ) |2, for x : B .
Thus it might be expressed, using probabilistic assignment, as a procedure with
result parameter χ

χ : q(B)

(χ := δ0) |χ(0)|2⊕ (χ := δ1) .

We find it convenient, for more general forms of observation, to conform
to standard practice and return not just the reduced state (the eigenvector of
the matrix corresponding to the observation) but also the eigenvalue, in this
case 0 or 1. At the same time we note that the probability | χ(0) |2 equals the
inner product of the vector χ in enveloping space with its projection on the
one-dimensional subspace C δ0

〈χ,PC δ0(χ)〉 = χ(0)χ(0) = |χ(0) |2

where angle brackets denote inner product, PE (χ) denotes projection of χ onto
subspace E and overline denotes complex conjugate. The procedure above then



becomes

x : B, χ : q(B)

(x , χ := 0, δ0) 〈χ,P C δ0
(χ)〉⊕ (x , χ := 1, δ1) .

In that case enveloping space B C is the direct sum of the orthogonal subpsaces
C δx for x : B .

We now extend that simple case from qubits to quregs and from the family
of subspaces C δx to a family of arbitrary pairwise orthogonal subspaces which
span enveloping space. In order to do so it is convenient to use the following
notation for the probabilistic combination of a list of more than two programs.

If [ (Pj , rj ) | 0 ≤ j < m ] denotes a finite indexed family of (program, number)
pairs with

∑
0≤j<m rj = 1, then the probabilistic choice in which Pj is chosen

with probability rj is written in prefix form

⊕[ Pj @ rj | 0 ≤ j < m ] (6)

(whose advantage is to avoid the normalising factors required by nested infix
form).

Let V = [ Vj | 0 ≤ j < m ] be an indexed family of pairwise orthogonal
subspaces which together span enveloping space,

span [ Vj | 0 ≤ j < m ] = Bn C ,

where span E denotes the (complex) vector space generated by any subset E
of enveloping space. Finalisation with respect to V is defined to consist of a
procedure which reduces state to lie in one of the subspaces in V, with probability
determined as it was in the simple case above:

i : 0 . .m, χ : q(Bn)

Fin[V] (i , χ) =̂ ⊕[ (i , χ :∈ {j},Vj ) @ 〈χ,PVj
(χ)〉 | 0 ≤ j < m ]

wherein i is a result parameter determining the subspace to which state is re-
duced and χ is a value-result parameter giving that state. In most cases (and
with good physical reason if the observation is not ‘complete’ —i.e. Vi is more
than one-dimensional— χ is not used, in which case we simply suppress it. We
include χ in the definition of finalisation, however, because one of the quan-
tum algorithms requires it (the last example). That definition provides the law
‘introduce finalisation’.

The simple form of finalisation introduced in the qubit case is sufficiently
important to warrant its own notation. We write ∆ for the indexed family of
subspaces [C δx | x ∈ Bn ] . Then finalisation with respect to ∆ is called diagonal
finalisation and abbreviated

x : Bn

Fin[∆] (x ) .

Its definition reduces to

⊕[ x @ |χ(x ) |2 | x ∈ Bn ]



and the suppressed value of χ is determined by that of x since q(Bn) ∩ C δx is
a singleton. When an output number i : 0 . . 2n is required, it is produced by
applying to x : Bn the function which yields a number, num(x ), whose binary
representation equals its argument

num : Bn 0 . . 2n

num(x ) =̂
∑

j :0..n x (j )2j .

(7)

The definition of finalisation accords with general principles of quantum the-
ory (e.g. [13, 18, 27]), which permit simultaneous finalisation (or observation)
—i.e. in either order with the same result— since the subspaces in V are orthog-
onal. Thus feasibility of that definition is assured by general principles and in
particular by Jozsa’s characterisation [19] of quantum-observable functions.

It is interesting to note that finalisation is no more restrictive than proba-
bilistic choice. Indeed a simple trigonometric argument shows that P r⊕Q can
be achieved by a quantum program which uses ⊕ only in the form defined by
finalisation.

For examples of finalisation we proceed to the next section.

6 Example programs

In this section we demonstrate the expressive power of qGCL by casting in it a
representative selection of quantum algorithms and their specifications. Although
it is their efficiency which validates these algorithms, we are interested here in
formalising functionality. With each algorithm we state the feature of qGCL it
illustrates.

6.1 Fair coin

The first example is chosen to illustrate initialisation and diagonal finalisation
without any evolution, and is included as a consistency check. It shows how the
formalism is able to capture genuine probabilistic behaviour (i.e. not merely that
of a finite automaton satisfying some fairness condition).

The example finds serious application in formalisation of the ‘Mach-Zehnder
interferometer’ and, in particular, so-called ‘interference-free measurement’ [12].
In that setting the following program models a beam-splitter (a half-silvered
mirror which either transmits or reflects incident photons with equal probability)
and the Hadamard transform (4) is used for evolution.

The toss of a fair coin is modelled by specifying the result to be a uniformly-
distributed boolean:

var i : B •
i :∈ B



A quantum implementation is

var χ : q(B), i : B •
In (χ)

Fin[∆] (i)

which may be checked to satisfy its specification since the probability with which
i = 0 is of course

|χ(0) |2 = (2−1/2)2 = 1
2 .

A formal proof is immediate from the definitions of initialisation and finalisation.

6.2 Grover’s point search

The previous program can be proved to meet its probabilistic specification. The
next example provides a more typical quantum algorithm which achieves its
näıve specification only to within a margin of error. This example thus shows
how pGCL (and hence qGCL) captures this important type of behaviour.

The point search problem is: given an array f of 2n bits containing a single
1, locate it. A program which is correct on every execution is specified without
any recourse to probability:

var j : 0 . . 2n •
j := f −1(1) .

(8)

A standard algorithm is at best O(2n) in both the worst and average cases.
However Grover’s quantum algorithm [14], although correct only to within a
margin of error ε (dependent on the number of loop iterations), is O(2n/2) in
both those cases. It is conveniently specified by introducing some derived syntax:
P≥r⊕Q equals P with probability at least r and otherwise equals Q . It is defined
(cf. equation (3))

P ≥r⊕Q =̂ u{P s⊕Q | r ≤ s ≤ 1} (9)

which by a semantic convexity argument [23] simplifies to (P r⊕Q) u P .

The error-prone point-search problem is thus specified to behave, with prob-
ability at least ε, like the näıve behaviour (8) and otherwise to terminate with
an arbitrary value for j

var j : 0 . . 2n •
(j := f −1(1)) ≥ε⊕ (j ∈ 0 . . 2n) .



Grover’s implementation contains evolution expressed as a loop and uses the
function num (see (7)).

var χ : q(Bn), i : Bn , j : 0 . . 2n •
In (χ)

do N times
χ := Tf (χ)
χ := M (χ)

od

Fin[∆] (i)

j := num(i)

There transform Tf is defined by (5) and transform M inverts χ (pointwise)
about its average

M : q(Bn) q(Bn)

(Mχ)(x ) =̂ 2 [2−n
∑

y:Bn χ(y)]− χ(x ) .

We are not here concerned with the choice of N which determines the number of
iterations of the loop. The function ε = ε(N ) is investigated in [4] and its place
in a semantic (expectation-transformer) proof of correctness is explored in [5].

6.3 Deutsch-Jozsa classification

So far the specifications have been (demonically) deterministic (though proba-
bilistic) and we have used only diagonal finalisation. The next example meets
a nondeterministic specification, exhibits non-diagonal finalisation and requires
no margin for error.

A truth function f : Bn B is constant iff it takes only a single value. It is
balanced iff it takes values 0 and 1 equally often

# f −1(0) = # f −1(1) .

For use in the next section we note:

f is constant iff # f −1(1) ∈ {0, 2n},
f is balanced iff # f −1(1) = 2n−1,

and # f −1(1) =
∑

x :Bn f (x ) .

(10)

Any constant truth function f is not balanced. So any truth function is either
not balanced or not constant, usually both. The Deutsch-Jozsa classification
problem is to decide, for a given truth function, which holds; if both hold then
either answer is correct.

Letting the result be encoded by variable i : B, the problem is specified

var i : B •
if i f not balanced
[] ¬ i f not constant
fi



A standard algorithm for the Deutsch-Jozsa classification problem is at least
O(2n) in the worst case and on average evaulates f thrice. Deutsch and Jozsa’s
quantum algorithm [10] contains just one evolution step using the transformation
Tf defined by equation (5). It is expressed in our notation:

var χ : q(Bn), i : B •
In (χ)

χ := Tf (χ)

Fin[V] (i)

where finalisation is non-diagonal

V =̂ [ V ,V⊥ ]

V =̂ C
∑

y:Bn δy

V⊥ =̂ the orthogonal complement of V .

A derivation of that algorithm (and hence its correctness) is exhibited in the
next section.

6.4 Shor’s factorisation algorithm

Shor’s quantum algorithms [29] for factorisation and for discrete logarithm are
at once the most mathematically sophisticated and relatively efficient practi-
cal quantum algorithms known. We consider the former algorithm which, as has
been widely advertised, makes factorisation feasible by achieving an average-case
polynomial efficiency instead of the standard exponential. Although it demon-
strates no new features of qGCL we include it as the most important quantum
algorithm to date.

The factorisation problem is: given a natural number n > 1 find a prime
divisor d of n . It is thus naturally nondeterministic (as was Deutsch-Jozsa clas-
sification):

var d : 1 . . (n+1) •
d is a prime divisor of n .



For natural numbers x and y , we write x t y for their maximum and gcd(x , y)
for their greatest-common divisor. Shor’s algorithm is

var t : B, a, d , p : 0 . . (n+1) •
t := 0
do ¬t

a :∈ 2 . . n
d := gcd(a,n)
if d 6= 1 t := 1
[] d = 1 Q(a,n; p)

if p odd t := 1
[] p even
d := gcd(ap/2−1,n) t gcd(ap/2+1,n)
t := (d 6= 1)
fi

fi
od

The quantum content lies in procedure Q . It is our first example to use
quantum state after finalisation, though it does so for only standard purposes.

var χ : q(Bm×Bm), x : B2m , c : Bm •
In (χ)

χ := (Im ⊗Hm)(χ)

χ := E (χ)

χ := (Fm ⊗ Im)(χ)

Fin[∆] (x , χ)

c := Pm(χ)

p := post processing of c

where:

m satisfies n2 ≤ 2m ≤ 2n2 ;

Hm denotes the Hadamard transform defined by equation (4);

unitary transformation E : q(Bm×Bm) q(Bm×Bm) is defined in terms of
modular exponentiation

E (χ)(x , y) =̂ (x , y ⊕ num−1(anum(x) mod n)) ;

Fm : q(Bm) q(Bm) is the quantum Fourier transform (see [15], section 3.2.2);

diagonal finalisation has been extended to return also state χ ;



Pm : δ(Bm×Bm) Bm denotes a kind of projection

Pm(δx ⊗ δy) =̂ x ; and

the post processing of c is standard, using continued fractions to find effi-
ciently the unique p for which

| num(c)/2m − d/p | ≤ 2−(m+1) .

The first two lines of procedure Q are equivalent (see section 5.2) to

χ := (Hm ⊗ In)(δ0)

(where δ0 denotes the qureg containing m+n zeroes); however our insistence
that quantum programs begin with a standard initialisation obliges us to take
the longer version.

Simon’s quantum algorithm for his masking problem [30] is similar in struc-
ture, from our current point of view, to Shor’s factorisation algorithm.

6.5 Finite automaton

The previous algorithm uses quantum state after finalisation for the purpose of
(standard) post processing. However since finalisation was diagonal, the quantum
state could have been inferred from the eigenvalue returned by finalisation. The
next example uses non-diagonal finalisation and makes genuine use of quantum
state after finalisation. It thus justifies our inclusion of state in finalisation.

Recall that (standard) finite automata, whether deterministic or not and
one-way or two-way, accept just regular languages. For quantum finite automata
enough is already known to demonstrate that the picture is quite different (see
[15], chapter 4).

A one-measurement one-way quantum finite automaton employs finalisation
after reading its input string and so is readily expressed in our notation. So
instead we consider the many-measurement version which employs finalisation
after reading each symbol on its input string. It turns out (Kondacs and Watrous;
see, for example, [15] p. 159) that a many-measurement one-way quantum finite
automaton accepts a proper subset of regular expressions. Here we give sufficient
of the definition to permit its translation into our programming language.

For any set Σ, let Σ∗ denote the set of all finite sequences of elements of Σ.
Suppose that set S = {Sa ,Sr ,Sn} of subsets of Σ∗ partitions Σ∗. A sequence
s : Σ∗ is said to be accepted by S if s ∈ Sa , to be rejected by it if s ∈ Sr and to
fail classification if s ∈ Sn . Evaluation of that is specified:

var i : {a, r ,n} •
s ∈ Si .

But here we are interested in computing whether a prefix of a given sequence
is accepted or rejected, since that gives rise to an automaton which continues



to use its quantum state after finalisation. Its specification thus extends the
previous one. In it t ≤ s means that sequence t is a prefix of sequence s.

var i : {a, r ,n} • i = a ⇒ ∃ t ≤ s • t ∈ Sa

i = r ⇒ ∃ t ≤ s • t ∈ Sr

i = n ⇒ s ∈ Sn


(A stronger specification might reflect the fact that computation proceeds from
left to right and so ensure that sequence t there is smallest.)

A many-measurement one-way quantum finite automaton is designed to achieve
such a computation with efficient quantum evolution. It has a finite set Q of
states, with distinguished acceptance states Qa and rejection states Qr

Qa ⊆ Q

Qr ⊆ Q

Qa ∩Qr = { } .

Thus Qa ∪Qr need not exhaust Q .

On input sequence s = [σ0, . . . , σn−1] : Σ∗ the automaton evolves succes-
sively under unitary transformations

Uinit ,Uσ0
, . . . ,Uσn−1

subject to finalisation after each. If a finalisation leaves the automaton in an
acceptance state then computation terminates with output value i = a; if it
leaves the automaton in a rejection state then computation terminates with
output value i = r ; but otherwise the automaton reiterates. If it has not accepted
or rejected a prefix of the input sequence, it terminates when the entire sequence
has been read, with value i = n.

We thus let quantum state belong to q(Q), defined as was qureg state by
(1). Initialisation over q(Q) is defined as for registers; its feasibility is assured by
solubility of the appropriate simultaneous equations describing a unitary trans-
formation that yields a uniform image of δ0. For finalisation we take

V =̂ [ Va ,Vr ,Vn ]

Va =̂ span {δx | x ∈ Qa}
Vr =̂ span {δx | x ∈ Qr}
Vn =̂ (Va ⊕Vr )⊥ .



A program for such an automaton is

var χ : q(Q), b : B •
In(χ)

χ, b := Uinit(χ), 0

do ¬(b ∨ s = [ ])
Fin[V] (i , χ)
if i ∈ {a, r} b := 1
[] i /∈ {a, r} χ, s := Uhead(s)(χ), tail(s)
fi

od

That can be expressed only because we allow quantum state to be returned
by finalisation.

7 Example derivation

We conclude by outlining an algebraic derivation of the Deutsch-Jozsa classifica-
tion algorithm. It is to be emphasised that derivations (or verifications) using the
refinement calculus (i.e. the laws concerning refinement between programs —see
for example [20]) are quite different in style from those phrased in terms of seman-
tics (c.f. [5]). We are interested primarily in the shape of the derivation; and we
shall see that it is largely standard. This example demonstrates how the refine-
ment calculus which qGCL inherits from pGCL permits ‘homogeneous’ reasoning
about the functionality of quantum algorithms, without recourse to arguments
outside the formalism (pertaining for example to probabilism or ‘quantism’).

The following derivation can be followed intuitively as well as rigorously; the
steps involved correspond largely to steps in an informal explanation of why
the algorithm works. At one point v is extended to mean also data refinement,
of which care must (in general) be taken in the probabilistic setting; but here
the refinement is unproblematic. Interesting features of the derivation are the
appearance of quantum state and of the three quantum procedures.

var i : B •
if i f not balanced
[] ¬ i f not constant
fi

v (10) and standard reasoning

var i : B, j : 0 . . 1+2n •
j :=

∑
x :Bn f (x )

if j 6= 2n−1 i := 1
[] j /∈ {0, 2n} i := 0
fi

v standard reasoning



var i : B, j : 0 . . 1+2n •
j :=

∑
x :Bn f (x )

if j ∈ {0, 2n} i := 1
[] j = 2n−1 i := 0
[] j /∈ {0, 2n−1, 2n} (i := 1) u (i := 0)
fi

v arithmetic and standard and probabilistic reasoning

var i : B, j : 0 . . 1+2n •
j :=

∑
x :Bn f (x )

if j ∈ {0, 2n−1, 2n} (i := 1) |1−j/2n−1|⊕ (i := 0)
[] j /∈ {0, 2n−1, 2n} (i := 1) u (i := 0)
fi

v injective data refinement k = 1−j/2n−1

var i : B, k : [−1, 1] •
k := 2−n

∑
x :Bn (−1)f (x)

if k ∈ {−1, 0, 1} (i := 1) |k |⊕ (i := 0)
[] k /∈ {−1, 0, 1} (i := 1) u (i := 0)
fi

v ‘introduce probabilism’

var i : B, k : [−1, 1] •
k := 2−n

∑
x :Bn (−1)f (x)

(i := 1) |k |⊕ (i := 0)

v ‘sequential composition’

var i : B, k : [−1, 1], χ : q(Bn) •
χ := 2−n/2

∑
x :Bn (−1)f (x)δx

k := 2−n/2
∑

x :Bn χ(x )

(i := 1) |k |⊕ (i := 0)

v ‘sequential composition’ and definition of Tf

var i : B, k : [−1, 1], χ : q(Bn) •
χ := 2−n/2

∑
x :Bn δx

χ := Tf (χ)

k := 2−n/2
∑

x :Bn χ(x )

(i := 1) |k |⊕ (i := 0)

v definitions of In, Fin and diminish by k = 〈χ, 2−n/2 ∑
x :Bn (−1)f (x)δx 〉



var i : B, χ : q(Bn) •
In (χ)

χ := Tf (χ)

Fin[V] (i)

with family V = [ V ,V⊥ ], where V = C
∑

y:Bn δy .

8 Conclusions

We have proposed a language, qGCL, for the expression of quantum algorithms
and their derivations. It exhibits several features, many as a result of the work
on pGCL:

1. expressivity: the language is sufficiently expressive to capture existing quan-
tum algorithms

2. simplicity: the language seems to be as simple as possible (by law (3)) whilst
containing (demonic) nondeterminism and probability (the latter either in a
form restricted to ‘observation’ or for general use)

3. abstraction: the language contains control structures and data structures
at the level of abstraction of today’s imperative languages whilst abstract-
ing implementation concerns (like the representation of a function f on the
underlying standard types by its Lecerf-Bennett form on their quantum ana-
logues)

4. calculation: the language has a formal semantics, sound laws and provides a
refinement calculus supporting verification and derivation of quantum pro-
grams

5. the language provides a uniform treatment of ‘observation’.

We conclude that it does seem possible to treat quantum programs in a
refinement calculus with the same degree of elegance and rigour as standard
algorithms. Starting from a specification in which standard and probabilistic (but
not quantum) expressions appear it is possible to derive quantum algorithms by
introducing algorithmic and quantum structure (in the guise of quantum state
and the three quantum proceedures).

We have still to learn whether there are reuseable data refinements, or other
derivation clichés, appropriate to the derivation of quantum programs. But ab-
straction from implementation concerns seems to make quantum algorithms eas-
ier to express, understand and reason about. Unmentioned here are more general
properties of the functor q on types and work on the compilation of the programs
expressed in qGCL ([32]).
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