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Abstract. Formal techniques for verifying stochastic systems (e.g., prob-
abilistic model checking) do not generally scale well with respect to the
system size. Therefore, simulation-based techniques such as statistical
model checking are often used in practice. In this paper, we focus on
stochastic hybrid systems and evaluate Monte Carlo and Quasi-Monte
Carlo (QMC) methods for computing probabilistic reachability. We com-
pare a number of interval estimation techniques based on the Central
Limit Theorem (CLT), and we also introduce a new approach based on
the CLT for computing confidence intervals for probabilities near the
borders of the [0,1] interval. We empirically show that QMC techniques
and our CLT approach are accurate and efficient in practice. Our results
readily apply to any stochastic system and property that can be checked
by simulation, and are hence relevant for statistical model checking.

1 Introduction

Verification techniques for stochastic systems such as probabilistic model check-
ing can be very precise and can deal with a variety of stochastic systems (e.g.,
discrete-time Markov chains [23], continuous-time Markov chains [6] and Markov
decision processes [7]). However, as for standard, non-probabilistic model check-
ing, these techniques suffer from the state explosion problem, which limits their
applicability in many practical cases. Statistical model checking [24] is often used
in practice on stochastic systems that exceed the limits of probabilistic model
checking, or for which no formal technique is available (e.g., nonlinear stochastic
hybrid systems). In this paper, we focus on the probabilistic reachability prob-
lem for hybrid systems that depend on random parameters, which amounts to
computing the probability that the system reaches a goal state.

Checking reachability in hybrid discrete/continuous systems is an undecid-
able problem for all but the simplest systems (timed automata) [2]. (See [12] for
an up to date survey.) Formal verification of hybrid systems can include checking
the satisfiability of formulas involving real variables, which is known to be an
undecidable problem when, e.g., trigonometric functions are involved [21]. The
notion of δ-complete decision procedure was introduced to combat the undecid-
ability of general sentences over the reals [13]. This approach has been extended
to a bounded probabilistic reachability method with statistically valid enclo-
sures [19]. Essentially, this technique amounts to computing (multi-dimensional)



integrals of indicator functions, which can be done in three possible ways: rig-
orous, Monte-Carlo (MC) and Quasi-Monte Carlo (QMC). The computational
complexity of rigorous (i.e., numerically precise) computation of integrals grows
exponentially with respect to the number of dimensions [21]. This motivates the
use of QMC methods, which are asymptotically more efficient than MC meth-
ods. While MC methods are based on the Law of Large Numbers and random
sampling, QMC methods are based on deterministic sampling from so-called
quasi-random sequences. A drawback of QMC methods is that their integration
error is difficult to estimate in practice, so one instead estimates the error of Ran-
domised Quasi-Monte Carlo methods via confidence interval techniques based on
the Central Limit Theorem (CLT). However, a problem of many such techniques
is that the actual coverage probability of the interval near the boundaries (0 and
1) can be poor [17,9].

To summarise, in this paper we make the following contributions:

– we compare several confidence interval techniques for estimating probabili-
ties in MC and QMC methods, and we show that QMC methods are more
efficient in general;

– we propose a simple but effective modification of the CLT interval for esti-
mating probabilities close to 0 or 1, and we empirically show that it performs
well in practice.

While we focus on hybrid systems and reachability, our results readily apply to
any stochastic system and property whose truth can be checked by simulation.

Probabilistic Reachability. Hybrid systems provide a framework for modelling
real-world systems that combine continuous and discrete dynamics [2]. In par-
ticular, parametric hybrid systems (PHS) [19] represent continuous and discrete
dynamic behaviour dependent on parameters that remain unchanged during the
system evolution. Such systems can flow, described by differential equations, and
jump, described by difference equations or control graphs. (See Appendix A.1 for
the formal definition of PHS). In this paper, we consider stochastic PHS, which
introduce random parameters to an otherwise deterministic PHS. Bounded k-
step reachability in stochastic PHS aims at finding the probability that for the
given initial conditions the system reaches a goal state in k discrete transitions
within a given finite time. It can be shown that this probability can be com-
puted as an integral of the form

∫
G
dP, where G denotes the set of all random

parameter values for which the system reaches a goal state in k steps, and P is
the probability measure of the random parameters [19].

2 Integral Estimation Methods

Monte Carlo Method. Consider an integrable function f , the integral I =
∫ b
a
f(y)dy <

∞, and a random variable U on [a, b] with density ϕ. The expectation of f(U)

is E[f(U)] =
∫ b
a
f(y)ϕ(y)dy. If U is uniformly distributed on [a, b], then the in-

tegral becomes: I =
∫ b
a
f(y)dy = (b − a)E[f(U)]. Now, if we take N samples



{u1, . . . , uN} from U and compute the sample mean 1
N

∑N
i=1 f(ui), we obtain

the MC estimate: ∫ b

a

f(y)dy ≈ (b− a)
1

N

N∑
i=1

f(ui). (1)

The Strong Law of Large Numbers states that this approximation is convergent
to I with probability 1 (for N →∞). The variance of the MC estimator (1) is:

V ar(MC) =

∫ b

a

...

∫ b

a

(
1

N

N∑
i=1

f(ui)− I
)2

du1...duN =
σ2
f

N
(2)

where σ2
f is the integrand variance, which is assumed to exist. In practice, the

integrand variance is often unknown, and that is why the next estimation for
the CI is instead used: σ̂2

f = 1
N−1

∑N
i=1(f(ui) − 1

N

∑N
j=1 f(uj))

2, which enjoys

the unbiasedness property E[σ̂2
f ] = σ2

f .

Quasi-Monte Carlo Method. QMC methods can be regarded as a deterministic
counterpart to classical MC methods. Unlike MC integration, which uses esti-
mates (1) with randomly selected points, QMC methods use (1) but select the
points ui deterministically. In particular, QMC techniques produce determinis-
tic sequences of points that provide the best-possible spread over the integration
domain. These deterministic sequences are often referred to as low-discrepancy
sequences, of which the Sobol sequence [20] is a well-known example. An ef-
fective way to use the QMC method is by performing a change of variables to
reduce the integration to the [0, 1] domain. When we need to integrate over a
large domain [a, b], that avoids multiplying the QMC estimate by a large factor
(b− a) as required by (1).

A QMC advantage with respect to MC is that its error is O(1/N), while the
MC error (see Eq. (2)) is O(1/

√
N), where N is the sample size. The Koksma-

Hlawka inequality bounds the error of QMC estimates, but in practice it is
very hard to estimate [14], thereby hampering the use of QMC methods (see
Appendix A.2). As such, other methods for estimating the QMC error need to be
developed. For example, Ermakov and Antonov [5] have recently introduced the
Qint method for QMC variance estimation, based on a set of random quadrature
formulas (see below and Appendix A.3).

Randomised Quasi-Monte Carlo. As discussed earlier, the practical application
of QMC is limited by the difficulty of computing an estimate of the integration
error. However, allowing randomisation into the deterministic QMC procedure
enables constructing confidence intervals. A Randomised QMC (RQMC) proce-
dure can be described as follows. Suppose that X = {x1, ..., xn} is a deterministic
low-discrepancy set. By means of a transformation X̃ = Γ (X, ε) a finite set X̃ is
generated by the random variable ε with the same quasi-random properties of
the set X (see Figure 1). For a randomised set X̃i of size n we construct a RQMC



Fig. 1: Uniform pseudorandom, Sobol sequence and randomised Sobol sequence
points (obtained by transformation Γ = (X + ε) mod 1, where ε is a random
sample from MC sequence and X is low-discrepancy sample from Sobol sequence)
distribution in the 2-dimensional unit space. The comparison is based on the first
300 points of sequences.

estimate similar to (1):

RQMCj =
1

n

n∑
i=1

f(X̃i,j) (3)

for 0 < j 6 r, where r is the total number of different pseudo-random sequences.
Then, we take their average for overall RQMC estimation (3):

RQMC =
1

r

r∑
j=1

RQMCj (4)

which is then built out of rn samples in total. If we choose the Γ transformation
in such a way that each of the estimates RQMCj has the unbiasedness property,
i.e., E[RQMCj ] = I for all j, (e.g., Γ = (X + ε) mod 1), then the estimator (4)
will also be unbiased, i.e., E[RQMC] = I. By independence of the samples used
in (3) and (4), we have that:

V ar(RQMC) =
V ar(RQMCj)

r
.

Thus, we have the following variance estimation: V̂ ar(RQMC) = 1
r(r−1)

∑r
j=1(

RQMCj −RQMC
)2
.

3 Confidence Interval Estimation and Error Analysis

In the following we shall use the notation below:



– X̃ = 1
n

∑n
i=1 xi - sample mean;

– Ca = Quant(1− a
2 ) - inverse cumulative distribution function (quantile func-

tion) of a normal random variable with mean 0 and standard deviation 1;
parameter a defines the confidence level at 1− a;

– p̂ = ns/n - the binomially-distributed proportion, where: ns - number of
successes and nf - number of failures in a Bernoulli trial process; n - total
number of Bernoulli trials;

– q̂ = 1− p̂, and CI = confidence interval.

3.1 Intervals Based on the Standard CLT Interval

Modified Central Limit Theorem (CLT) interval. First, we consider the case
when the sample xi is extracted from the normal distribution N(µ, σ2) with
unknown mean µ and known variance σ2. Here, µ can be approximated by the
sample mean: µ ≈ X̃. To clarify this approximation, the standard CI for µ with
confidence level 1− a is:

CICLT =

(
X̃ − Ca

σ√
n

; X̃ + Ca
σ√
n

)
. (5)

In practice, the variance σ2 is often unknown, but one can use the same CI by

replacing σ with the sample standard deviation s =
√

1
n−1

∑n
i=1(xi − X̃)2. This

method is widely used for estimating the distribution of binomially-distributed
proportions. A number of works (e.g., [8,9,10]) note that the CICLT approx-
imation can be poor when applied to Bernoulli trials with p̂ close to 0 or 1.
Indeed, in the Bernoulli case, when p̂ is 0 (or 1) the CLT interval (5) cannot be
constructed, since s = 0 (recall that the sample standard deviation s substitutes
σ, which is most often unknown). In order to address this problem, we simply
overapproximate the sample standard deviation with 1

n2 if p̂ is equal to 0 (or 1).

Wilson interval. It was introduced by Wilson in 1927 in his fundamental work
[11] and uses the inversion of the CLT interval. The interval is:

CIW =

(
ns +

C2
a

2

n+ Ca
− Ca

√
n

n+ C2
a

√
p̂q̂ +

C2
a

4n
;
ns +

C2
a

2

n+ Ca
+

Ca
√
n

n+ C2
a

√
p̂q̂ +

C2
a

4n

)
(6)

This interval has some obvious advantages - it can not exceed probability bound-
aries, and it can be easily calculated even if p̂ is 0 or 1. At the same time, CIW
has downward spikes when p̂ is close to 0 and 1, because it is formed by an
inverted CLT approximation.

Agresti-Coull interval. This method was introduced by Agresti and Coull in
1998 [1]. One of the most interesting features of this CI is that it makes a crucial
assumption about ns and nf . This interval formally adds two successes and two



failures to the obtained values in case of 95% confidence level and then uses the
CLT method. The interval can be constructed as follows:

CIAC =

(
X̃ − 1

n+ C2
a

(ns +
1

2
C2
a); X̃ +

1

n+ C2
a

(ns +
1

2
C2
a)

)
(7)

Additionally, this interval can be modified by using the center of the Wilson
interval (6) in place of p̂:

CIACW
=

(
ns +

C2
a

2

n+ Ca
− Ca

√
p̂q̂(n+ C2

a); (
ns +

C2
a

2

n+ Ca
− Ca

√
p̂q̂(n+ C2

a)

)
. (8)

Logit interval. The Logit interval is based on a transformation of the standard
interval [10]. It uses the empirical logit transformation: λ = ln( p̂

1−p̂ ) = ln( ns

n−ns
).

The variance of λ is: V̂ ar(λ) = n
ns(n−ns)

and the Logit interval is estimated as:

CIL =

(
eλL

1 + eλL
,

eλU

1 + eλU

)
(9)

where the lower bound transformation is λL = λ − Ca
√
V̂ ar(λ) and the upper

bound transformation is λU = λ+ Ca

√
V̂ ar(λ).

Anscombe interval. This interval was proposed by Anscombe in 1956 [4] and

is based on the Logit interval (9). The key difference is in λ and V̂ ar(λ) esti-

mation, where λ is defined as λ = ln(
ns+

1
2

n−ns+
1
2

) and the variance is V̂ ar(λ) =

(n+1)(n+2)
n(ns+1)(n−ns+1) . On this basis, the Anscombe interval CIAnc is estimated in the

same way as Logit interval (9).

Arcsine interval. It uses a variance-stabilising transformation of p̂. In 1948,
Anscombe introduced an improvement [3] for achieving better variance stabili-

sation by replacing p̂ to p† = ns+3/8
n+3/4 , obtaining

CIArc =

(
sin(arcsin(

√
p†)− Ca

2
√
n

)2, sin(arcsin(
√
p†) +

Ca
2
√
n

)2
)
. (10)

3.2 Alternative Intervals Based on the Beta-Function

Bayesian interval. This method is based on the assumption that the (unknown)
probability p to estimate is itself a random quantity [25]. The Bayesian interval
is also called credible, because it is based on the posterior distribution of the un-
known quantity computed by using its prior distribution and the Bayes theorem.
The prior distribution can be constructed by means of the Beta distribution. If



p has a prior distribution Beta(α, β) then after n Bernoulli trials with ns suc-
cesses, p has posterior distribution Beta(ns + α, n− ns + β). We can construct
a Bayesian equal-tailed interval by the formula:

CIB =
(
Beta−1(

a

2
, ns + α, n− ns + β), Beta−1(1− a

2
, ns + α, n− ns + β)

)
(11)

where, Beta−1(a, α, β) is the inverse of the cumulative distribution function of
Beta(α, β). The probability density function of theBeta distribution is f(x;α, β) =

1
B(α,β)x

α−1(1− x)β−1, where 0 ≤ x ≤ 1, α, β > 0 and B is the beta function. In

our experiments we used α = β = 1, which gives the uniform distribution.

Jeffreys interval. The Jeffreys interval is a Bayesian interval and uses the Jef-
freys prior [15], which is a non-informative prior given by the Beta distribution
with parameters ( 1

2 ,
1
2 ). We can form Jeffreys’ equal-tailed interval by (11) with

parameters (α = 1
2 , β = 1

2 ).

Clopper-Pearson interval. This method was introduced by Clopper and Pearson
in 1934 [8] and is based on the inversion of the binomial test, rather than on
approximations. The Clopper-Pearson interval is:

CICP =
(
Beta−1(

a

2
, ns, n− ns + 1), Beta−1(1− a

2
, ns + 1, n− ns)

)
. (12)

The interval states that the computed coverage probability is always above or
equal to the 1− a confidence level. In practice, it can be achieved in cases when
n is large enough, while in general the actual coverage can exceed 1− a. We can
conclude from Eq. (12) that due to the absence of the α and β parameters, a
tighter CI can be achieved only by increasing the number of trials. We report this
interval only for completeness, although we will not use it in our experiments as
it is similar to the Bayesian and Jeffreys intervals.

4 Results

We evaluate confidence interval (CI) estimation methods based on the CLT inter-
val with the RQMC and MC techniques and the Bayesian CI estimation method
with the MC technique. In the RQMC case r = 10 quasi-random sequences
were obtained by changing the pseudo-random points ε of the transformation
Γ = (X + ε) mod 1, while the Sobol sequence points X remained the same. In
the MC case we used the same 10 pseudo-random points sequences that were
used for RQMC calculations. (The high confidence levels used (up to 0.99999)
motivates our choice of ten repetitions.) The samples used in Section 4.1 and 4.2
were obtained by sampling Bernoulli’s, i.e., no model simulation was performed.

4.1 Border Probability Cases

Intervals based on CLT and Bayesian interval. The comparison of the different
CI estimation techniques for low probability cases is presented in Figure 2. It



shows that all intervals except the Arcsin interval (10) (see plot c = 0.99 of
Figure 2 for probability=0.001) contain the true probability value. The Bayesian
method tends to overestimate the true probability values as they increase while
CICLT tends to underestimate them. Also, it is interesting to note that the most
accurate center value is returned by the Agresti-Coull interval. The reason why
CICLT tends to include the true probability value near the upper bound of the
interval is directly related to the number of samples. As shown in Figure 2, for
true probability values between 0.007 - 0.01, the CICLT center is moving up
evenly to the true probability value with the increase of the confidence value.
For the other true probability values (0.001-0.006) this drift remains, but it can
not be seen from the Figure because of the small difference in the number of
samples for all confidence levels, which causes the CI center to move wave-like.

In Figure 3 we plot the number of samples that the CI estimation techniques
used to return intervals for four confidence levels. It can be clearly seen that when
increasing the confidence level the CIs based on the CLT interval outperform
the Bayesian CI. The plot with c = 0.99999 in Figure 3 illustrates that the best
techniques in the number of samples are (best to worst): CICLT , Qint, CIArc,
CIW , CIL, CIAns, CIACW

and CIB . The CIL and CIAnc techniques always
show almost the same results near the bounds, because of the modification of the
CIL. Initially, CIL is not able to deal with probability values near the bounds
according to its λ formula (see Section 3.1). It has been modified to use the
Anscombe estimation formula in cases when p̂ = 0 or p̂ = 1. It is also important
to note that the difference in the number of samples between CICLT , CIArc
and CIB for extreme probability cases is relevant. For example in the plot with
c = 0.9999 of Figure 3 the number of samples used to obtain interval for p = 0.005
equals to 1,078 for CICLT , 2,662 for the CIArc and 4,440 for CIB .

Summarising, for probability values near the bounds (0 or 1) our modified
CLT method achieves better results with fewer samples in comparison with the
other techniques. For probability values away from the bounds, the CLT, Wilson,
Agresti–Coull, Logit and Anscombe methods are all very similar, and so for
such probabilities we come to the conclusion that the CLT interval should be
recommended, due to its simplest form. Meanwhile for smaller sample sizes, the
CICLT is strongly preferable to the others and so might be the choice where
sampling cost is paramount.

Qint method results. In Figure 2 and Figure 3 we also plotted the results of the
Qint algorithm (see Section 2). In our research we used Qint with n = k × 2s,
where k = 2. These parameters were used to form n points of the Sobol sequence
xi with numbers i ∈ Ik,s = {1, 2, ..., k × 2s}. These parameters were chosen on
the basis of the original study of the Qint method [5]. As mentioned in Section 2,
Qint uses a cubature randomization method and provides an integral estimation
variance (see Appendix A.3) that we used to obtain a CI by our modified CLT
interval (5).

In Figure 2 we display the Qint intervals for border probability values. We
can see from the plots that the Qint CI always contains the true probability
value. At the same time for all confidence levels from 0.99 to 0.99999 and for



Fig. 2: Comparison of confidence intervals for probability values near 0, interval
size equal to 10−2 and c - confidence level.



Fig. 3: Comparison of sample size for probability values near 0, interval size equal
to 10−2 and c - confidence level.

true probability values 0.006-0.01, Qint shows better centration than CIB and
CICLT . For example, the greatest difference between the Qint CLT center result
and the true probability values is 0.00245 for c = 0.99 (p=0.004), while this
difference for CIB reaches 0.00518 for c = 0.99 (p=0.007). We can see in Figure
3 that, as expected, Qint uses fewer samples than other CIs but CICLT . Our
modification allows the Qint algorithm to return intervals even if ns = 0, which
significantly decreases the final sample size.

The fact that with the chosen parameters Qint can not outperform our mod-
ified CICLT leads us to the conclusion that our use of the standard deviation
formula with 1

n2 lower bound is a rather effective and simple solution. However,



(a) Model: Collision advanced, type - max. (b) Model: Bad, type - max2.

Fig. 4: MC (blue line) and QMC (red line) absolute error with respect to the
number of samples.

the deep range of the possible parameters variation of the Qint algorithm lead
us to believe that further research towards their comparison is needed.

4.2 MC and QMC Error Comparison

As mentioned in Section 2, the aymptotic QMC advantage over MC on the
integration error holds in general. When the true probability value is extremely
close to 0 (i.e., ns = 0 is obtained), we have that both the MC and QMC produce
a 0 estimate and hence their error equals the true probability value. Also, the
chaotic coverage properties of the MC method are far more persistent than they
are appreciated. The chaotic behaviour does not disappear even when n is quite
large and the true probability p is not near the boundaries. For instance, in Figure
4 (a) it is visible that even when n is quite large (i.e., tends to 10,000 samples)
the actual error value of the MC method reaches 0.005. Hence we conclude that
MC-based CI estimation techniques can be misleading and defective in several
respects and their point estimates should be used with care [9].

A notable phenomenon, which was noticed for both the MC and QMC meth-
ods is that the actual error contains non-negligible oscillations as both p and n
vary. There exist some “unlucky” pairs (p, n) such that the corresponding ab-
solute error is much greater than the results for smaller n. The phenomenon of
oscillation is both in n, for fixed p, and in p, for fixed n. Furthermore, drastic
changes in coverage probability can occur in nearby p for fixed n and in nearby
n for fixed p [9]. We can see it on the simple example in Figure 4 (b). However,
the same figure shows that error of QMC is more “stable” than the MC error.

4.3 Hybrid Systems Results

The results in this Section have been obtained via the ProbReach tool [18] for
computing bounded reachability in stochastic parametric hybrid systems. Five



models1, including nonlinear systems, were chosen for our experiments to give
use cases representative of real applications. Based on our model set, we provide
in Table 1 a comparison of the CIs described in Section 3. The true probability
value P is either an analytically computed single probability value or a rigorously
computed absolute (non-statistical) interval [18].

As it can be seen in Table 1, all the intervals computed overlap with each
other. The key difference in the interval size can be found in the results of the Bad
model Type min and the Collision (Basic) model Type min. From the results we
can conclude that the true probability value is very close to 0. This allows the
Bayesian, CLT and Agresti-Coull methods to form intervals that are actually
half of the required width 10−2, while the other techniques return fully sized
intervals. That happens because CIB is using the posterior distribution to form
the interval, which is always defined on the whole [0,1] interval. At the same
time, the CICLT and CIACW

calculations of the mean value are quite close to
zero, thus cutting out the negative part of the interval. This trend holds for all
probability values within [0, 0.001]. Table 1 also shows that with the increase
of the confidence level the interval’s precision grows, which in turn is directly
related to the usage of the inverse cumulative distribution function for normal
random variable with given confidence level in formulas for CICLT (5), CIW (6),
CIACW

(8) and CIArc (10). It also results in the increase of the sample size for
CIL and CIAnc.

The comparison of the obtained intervals (see Table 1) with the true proba-
bility value or interval P shows that all CIs contain the single probability values
but CIAcr (see Bad type min model of Table 1), and all CIs overlap with the
true probability intervals. We also note that the true probability intervals of the
Collision Extended, Collision Advanced, and Anesthesia models contain all con-
fidence intervals for all confidence levels. The Collision Basic and Deceleration
models’ true probability intervals do not contain CIs due to their size (< 0.01).
The original Qint algorithm was not able to provide results for the Bad type
min and Collision Basic type min models, because of the very small probability
involved (4 × 10−7 and [0, 0.00201]) it could not detect ns > 0 for the chosen
confidence level and interval size. Therefore, Qint was used in conjunction with
our CLT method described in Section 3.1. In conclusion, all the CI techniques
examined returned reliable intervals.

Table 2 reports the number of samples required to compute the CIs obtained
via ProbReach (for confidence 0.99999 — results for other confidence levels can
be found in Appendix A.4). As it was noted earlier for Figure 4, the number of
samples needed for CI computation grows from the bounds to the center of the
[0,1] interval (this is because the variance of a Bernoulli is largest at p = 0.5).
The most important outcome is that all CIs (except CIArc) show better result
in number of samples with respect to CIB . Overall, Qint showed the best result
for every model, closely followed by CICLT : from Table 2 we see that Qint used
on average between 1,850 and 24,802 fewer samples than other CI techniques.

1 Available at https://github.com/dreal/probreach/tree/master/model
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Model Type CIB CICLT CIACW
CIW CIL CIAns CIArc Qint

Good
max 70422 69484 69582 69496 69530 69529 77262 68456
min 71898 71286 71339 71293 71321 71321 79369 68994

Bad
max 37388 36518 36771 36629 36687 36868 60006 36164
max2 79306 79097 79125 79101 79118 79118 96442 77892
min 5797 124 2766 1963 4136 4136 572 94

Deceleration
max 65248 65233 65330 65299 65320 65319 72114 59882
min 33147 32969 33133 33018 33060 33060 34231 29096

Collision
(Basic)

max 25279 24711 24834 24789 24934 24933 26045 23016
min 5797 124 2766 1963 4136 4136 572 94

Collision
(Extended)

max 191466 190776 191253 190894 191485 191472 376294 185456
min 41153 38942 39745 39473 39537 39541 47923 37608

Collision
(Advanced)

max 131517 129746 131185 129845 129934 129933 183405 127486
min 27305 25657 25835 25736 25792 25791 29362 24569

Anesthesia n/a 16197 15453 15834 15634 15734 15733 17845 15314

Table 2: Sample size comparison for confidence interval computation obtained
via ProbReach, with solver δ precision equal to 10−3 and interval size equal to
10−2, Type - extremum type; confidence level = 0.99999.

5 Conclusions

In this paper, we have provided a comprehensive evaluation of confidence interval
calculation techniques for Monte Carlo (MC) and Quasi-Monte Carlo (QMC)
methods. We have shown that:

– the Central Limit Theorem (CLT) interval generally performs best, in par-
ticular for small sample sizes;

– when estimating probabilities near the borders (i.e., close to 0 or 1), our sim-
ple CLT modification has proved to be very effective, while other techniques
cannot form intervals;

– QMC methods are more efficient than MC methods by providing precise
estimates with fewer samples.

Based on our analysis, we suggest that our results can be used as guidelines for
statistical model checking of time-bounded properties beyond reachability.
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A Appendix

A.1 Hybrid System Definition

A Parametric Hybrid System [19] is a tuple

H =< Q,Υ,X, P, Y,R, jump, goal >

where

– Q = {q0, · · · , qm} a set of modes (discrete components of the system),
– Υ = {(q, q′) : q, q′ ∈ Q} a set of transitions between modes,
– X = [u1, v1]× · · · × [un, vn] ⊂ Rn a domain of continuous variables,
– P = [a1, b1]× · · · × [ak, bk] ⊂ Rk the parameter space of the system,
– Y = {yq(p, t) : q ∈ Q,p ∈ X×P, t ∈ [0, T ]} the continuous system dynamics

where yq : X × P × [0, T ]→ X,
– R = {g(q,q′)(p, t) : (q, q′) ∈ Υ,p ∈ X × P, t ∈ [0, T ]} ‘reset’ functions g(q,q′) :
X × P × [0, T ]→ X defining the continuous state at time t = 0 in mode q′

after taking the transition from mode q.

and predicates (or relations)

– jump(q,q′)(x) defines a discrete transition (q, q′) ∈ Υ which may (but does not
have to) occur upon reaching the jump condition in state (x, q) ∈ X×P ×Q,

– goalq(x) defines the goal state x in mode q.

A.2 Koksma-Hlawka inequality

The well-known Koksma-Hlawka inequality [16] provides an upper bound for
the integral estimation error with QMC methods. Suppose we want to compute
I =

∫
Ud
f(x)dx, where Ud is the hypercube over [0, 1]d. Let {u1, ..., un} be a set

in Ud. Then the Koksma-Hlawka inequality is:∣∣∣∣I − 1

n

n∑
i=1

f(ui)

∣∣∣∣ 6 V (f)D∗n{u1, ..., un}, (13)

where V (f) is the bounded variation in the sense of Hardy and Krause:

V (f) =

d∑
k=1

∑
1<i1<...<ik<d

V kVit
(f ; i1, ..., ik),

where V kVit
(f ; i1, ..., ik) is the variation in sense of Vitali [22], applied to the

restriction of f to the space dimension k{(u1, ..., ud) ∈ [0, 1]d : uj = 1 for j 6=
i1, ..., ik}. If k = d we obtain an empty set, which can not be calculated.

The star-discrepancy D∗n is defined as follows:

D∗n{u1, ..., un} = sup
B∈W∗

∣∣∣∣#{ui : ui ∈ B}
n

− λd(B)

∣∣∣∣,



where #{ui : ui ∈ B} are points from the set B and W ∗ is defined as the set of
the form:

d∏
k=1

[0, ck) = {y ∈ Ud : 0 6 yk < ck}

Unfortunately inequality (13) can not serve as a basis for a constructive
evaluation of the integration error in practical applications. In particular, com-
puting the star-discrepancy of an arbitrary set is an NP-hard problem [14]. Also,
estimating the Hardy-Krause variation is a computationally heavy problem.

A.3 Qint algorithm

Consider an arbitrary probability space (U ,B, µ), where U is non-empty set, B is
σ-algebra for subsets of U with probability measure µ. We choose some number
s so that N = 2s, i.e.we need to split U on N disjunctive parts of equal measure
U1,U2...UN , which fully cover U . Then we need to construct a system of N Haar
functions derived from U1,U2...UN and orthonormal in L2(dµ).

To construct an estimate of the integral I they use a set of random quadrature
formulas introduced by the Ermakov-Granovsky theorem, which allows us to
construct N -point formulas with two important properties: the unbiasedness
property for integral I and the accuracy property for the considered Haar system.
The nodes of the formula are random variables with distribution density:

φ(u1, u2, ..., uN ) =

{
NN

N ! if (u1, u2, ..., uN ) ∈ Lat(i1, i2, ..., iN )

0 otherwise

where Lat(i1, i2, ..., iN ) is a Latin set of the permutation (i1, i2, ..., iN ), defined by
the condition: (u1, u2, ..., uN ) ∈ Lat(i1, i2, ..., iN ) ⇔ ∀j ∈ {1, 2, ..., N}uj ∈ Uij ,
where Uij is a set of permuted orthonormal Haar functions [5].

The variance of the constructed cubature formula Cub[f ] = 1
N

∑N
i=1 f(ui)

can be calculated as:

DCub[f ] =

∫
UN

Cub[f ]2dφ−
(∫
UN

Cub[f ]dφ

)2

=

= DMC[f ]+
1

N
(a1+a2+...+aN )2−a21−a22−...−a2N = DMC [f ]− 1

N

∑
i<j

(ai−aj)2,

where DMC is the variance of MC method (2) and ai =
∫
Ui f(u)µ(du) for

i = 1, 2, ..., N . We can then redefine the integral estimation variance as:

V ar(QMC) = V ar(MC)− 1

N

∑
i<j

(ai − aj)2 . (14)

A.4 Further Results



Model Type c CIB CICLT CIACW
CIW CIL CIAns CIArc Qint

Good
max 0.999 39211 39187 39215 39196 39210 39200 43407 38094
min 0.999 39650 39364 39401 39368 39373 39373 43848 38204

Bad
max 0.999 20717 20401 20550 20497 20527 20562 32006 20322
max2 0.999 44557 43848 43863 43848 43855 43855 56442 42888
min 0.999 3950 107 1549 1103 1362 1362 434 n/a

Deceleration
max 0.999 36609 36039 36061 36044 36132 36130 39524 33068
min 0.999 18727 18629 18709 18671 18628 18682 19438 16618

Collision
(Basic)

max 0.999 13795 13222 13341 13286 13311 13397 15385 13098
min 0.999 3950 107 1549 1103 1362 1362 434 n/a

Collision
(Extended)

max 0.999 106252 106099 106243 106147 106224 106224 166345 104531
min 0.999 22887 21860 22196 21935 22041 22038 24742 20862

Collision
(Advanced)

max 0.999 71746 70435 70646 70636 70642 70640 143390 69642
min 0.999 15833 15679 15746 15723 15748 15746 18354 15086

Anesthesia n/a 0.999 9017 8516 8827 8628 8593 8592 9284 8430

Good
max 0.9999 55187 54327 54361 54347 54355 54362 60104 52990
min 0.9999 55885 55281 55231 55286 55307 55307 61631 53411

Bad
max 0.9999 29147 28240 28339 28276 28289 28289 42463 27944
max2 0.9999 62735 61139 61364 61152 61359 61358 86442 59012
min 0.9999 4849 116 2153 1530 2458 2458 508 n/a

Deceleration
max 0.9999 50476 50243 50277 50250 50269 50268 55495 46084
min 0.9999 25741 25695 25817 25779 25794 25794 26790 22466

Collision
(Basic)

max 0.9999 19476 18907 19084 18984 19035 19032 21537 18128
min 0.9999 4849 116 2153 1530 2458 2458 508 n/a

Collision
(Extended)

max 0.9999 148388 147675 147834 147746 147786 147635 236423 145974
min 0.9999 31528 29894 30420 30023 30423 30420 34736 28588

Collision
(Advanced)

max 0.9999 100592 100143 100275 100174 100196 100195 168345 99456
min 0.9999 20497 20130 20412 20312 20384 20383 23864 19788

Anesthesia n/a 0.9999 13131 11462 11683 11658 11724 11722 13948 11288

Table 3: Samples size comparison for confidence interval computation obtained
via ProbReach, with solver δ precision equal to 10−3 and interval size equal to
10−2, Type - extremum type and c - confidence level.


